
SANDIA REPORT

SAND2013-3181

Unlimited Release

Printed April 2013

Supersedes SAND2012-10087

Dated November 2012

The Portals 4.0.1 Network Programming

Interface

Brian W. Barrett, Ron Brightwell, Scott Hemmert, Kevin Pedretti, Kyle Wheeler,

Keith Underwood, Rolf Riesen, Arthur B. Maccabe, and Trammell Hudson

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2013-3181

Unlimited Release

Printed April 2013

Supersedes SAND2012-10087

dated November 2012

The Portals 4.0.1 Network Programming Interface

Brian W. Barrett

Ron Brightwell

Kevin Pedretti

Kyle Wheeler

Scalable System Software Department

Keith Underwood

Central Architecture and Planning

Intel Corporation

P.O. Box 5800

Albuquerque, NM 87185-1319

Keith.D.Underwood@intel.com

Scott Hemmert

Scalable Computer Architecture Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-1319

{bwbarre, rbbrigh, ktpedre,

kbwheel, kshemme}@sandia.gov

Arthur B. Maccabe

Computer Science and Mathematics

Oak Ridge National Laboratory

Oak Ridge, TN 37831

maccabeab@ornl.gov

Rolf Riesen

IBM

rolf.riesen@ie.ibm.com

Trammell Hudson

c/o OS Research

114 Pierrepont Street #5

Brooklyn, NY 11201

hudson@osresearch.net

Abstract

This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to

allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0

is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data

movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS

machine. Sandia’s Cplant cluster project motivated the development of Version 3.0, which was later extended to

Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generation of

machines employing advanced network interface architectures that support enhanced offload capabilities.

3

Acknowledgments

Over the years, many people have helped shape, design, and develop Portals. We wish to thank: Eric Barton, Peter

Braam, Jerrie Coffman, Lee Ann Fisk, David Greenberg, Eric Hoffman, Gabi Istrail, Jeanette Johnston, Chu Jong,

Clint Kaul, Roy Larsen, Mike Levenhagen, Kevin McCurley, Jim Otto, Bob Pearson, David Robboy, Mark Sears,

Lance Shuler, Jim Schutt, Mack Stallcup, Todd Underwood, David van Dresser, Dena Vigil, Lee Ward, Stephen

Wheat, and Frank Zago.

People who were influential in managing the project were: Bill Camp, Ed Barsis, Art Hale, and Neil Pundit

While we have tried to be comprehensive in our listing of the people involved, it is very likely that we have missed at

least one important contributor. The omission is a reflection of our poor memories and not a reflection of the

importance of their contributions. We apologize to the unnamed contributors.

4

Contents

List of Figures 9

List of Tables 10

List of Implementation Notes 11

Preface 12

Nomenclature 13

1 Introduction 15

1.1 Overview . 15

1.2 Purpose . 15

1.3 Background . 16

1.4 Scalability . 17

1.5 Communication Model . 17

1.6 Zero Copy, OS Bypass, and Application Bypass . 17

1.7 Faults . 18

2 An Overview of the Portals API 19

2.1 Data Movement . 19

2.2 Usage . 23

2.3 Completion Events . 23

2.4 Portals Addressing . 24

2.4.1 Lists and List Entries . 26

2.4.2 Match Lists and Match List Entries . 28

2.5 Modifying Data Buffers . 28

2.6 Ordering . 30

2.6.1 Short Message Ordering Semantics . 30

2.6.2 Long Message Ordering Semantics . 30

2.6.3 Relative Ordering of Operations in Overlapping Portals . 31

2.6.4 Ordering of Unexpected Messages . 31

2.6.5 Relaxing Message Ordering . 31

2.7 Flow Control . 31

2.8 Multi-Threaded Applications . 32

3 The Portals API 35

3.1 Naming Conventions and Typeface Usage . 35

3.2 Constants . 35

5

3.3 Base Types . 36

3.3.1 Sizes . 36

3.3.2 Handles . 36

3.3.3 Indexes . 37

3.3.4 Match Bits . 37

3.3.5 Network Interfaces . 37

3.3.6 Identifiers . 37

3.3.7 Status Registers . 37

3.4 Function Arguments and Return Codes . 38

3.5 Initialization and Cleanup . 38

3.5.1 PtlInit . 38

3.5.2 PtlFini . 39

3.6 Network Interfaces . 39

3.6.1 The Network Interface Limits Type . 39

3.6.2 PtlNIInit . 41

3.6.3 PtlNIFini . 43

3.6.4 PtlNIStatus . 43

3.6.5 PtlNIHandle . 44

3.6.6 PtlSetMap . 44

3.6.7 PtlGetMap . 45

3.7 Portal Table Entries . 46

3.7.1 PtlPTAlloc . 46

3.7.2 PtlPTFree . 47

3.7.3 PtlPTDisable . 48

3.7.4 PtlPTEnable . 48

3.8 User Identification . 49

3.8.1 PtlGetUid . 49

3.9 Process Identification . 50

3.9.1 The Process Identification Type . 50

3.9.2 PtlGetId . 51

3.9.3 PtlGetPhysId . 51

3.10 Memory Descriptors . 52

3.10.1 The Memory Descriptor Type . 52

3.10.2 The I/O Vector Type . 54

3.10.3 PtlMDBind . 54

3.10.4 PtlMDRelease . 55

3.11 List Entries and Lists . 56

3.11.1 The List Entry Type . 57

3.11.2 PtlLEAppend . 59

6

3.11.3 PtlLEUnlink . 61

3.11.4 PtlLESearch . 62

3.12 Match List Entries and Matching Lists . 63

3.12.1 The Match List Entry Type . 64

3.12.2 PtlMEAppend . 68

3.12.3 PtlMEUnlink . 69

3.12.4 PtlMESearch . 70

3.13 Events and Event Queues . 71

3.13.1 Kinds of Events . 71

3.13.2 Event Occurrence . 73

3.13.3 Failure Notification . 73

3.13.4 The Event Structure . 75

3.13.5 PtlEQAlloc . 78

3.13.6 PtlEQFree . 79

3.13.7 PtlEQGet . 80

3.13.8 PtlEQWait . 80

3.13.9 PtlEQPoll . 81

3.14 Lightweight Counting Events . 82

3.14.1 The Counting Event Type . 83

3.14.2 PtlCTAlloc . 83

3.14.3 PtlCTFree . 84

3.14.4 PtlCTCancelTriggered . 85

3.14.5 PtlCTGet . 85

3.14.6 PtlCTWait . 86

3.14.7 PtlCTPoll . 86

3.14.8 PtlCTSet . 87

3.14.9 PtlCTInc . 88

3.15 Data Movement Operations . 88

3.15.1 Portals Acknowledgment Type Definition . 89

3.15.2 PtlPut . 89

3.15.3 PtlGet . 91

3.15.4 Portals Atomics Overview. 92

3.15.5 PtlAtomic . 94

3.15.6 PtlFetchAtomic . 96

3.15.7 PtlSwap . 97

3.15.8 PtlAtomicSync . 99

3.16 Triggered Operations . 99

3.16.1 PtlTriggeredPut . 100

3.16.2 PtlTriggeredGet . 101

7

3.16.3 PtlTriggeredAtomic . 102

3.16.4 PtlTriggeredFetchAtomic . 103

3.16.5 PtlTriggeredSwap . 104

3.16.6 PtlTriggeredCTInc . 106

3.16.7 PtlTriggeredCTSet . 106

3.17 Deferred Communication Operations . 107

3.17.1 PtlStartBundle . 107

3.17.2 PtlEndBundle . 108

3.18 Operations on Handles . 109

3.18.1 PtlHandleIsEqual . 109

3.19 Summary . 109

4 Guide to Implementors 121

4.1 Run-time Support . 121

4.2 Data Transfer . 121

4.2.1 Sending Messages . 121

4.2.2 Receiving Messages . 125

4.3 Event Generation and Error Reporting . 125

Appendix

A Portals Design Guidelines 129

A.1 Mandatory Requirements . 129

A.2 The Will Requirements . 130

A.3 The Should Requirements . 130

B README Definition 133

C Summary of Changes 135

C.1 Portals 4.0.1 . 135

C.2 Portals 4.0 . 135

Index 137

8

List of Figures

2.1 Graphical Conventions . 19

2.2 Portals Put (Send) . 20

2.3 Portals Get (Receive) from a match list entry . 21

2.4 Portals Get (Receive) from a list entry . 22

2.5 Portals Atomic Swap Operation . 22

2.6 Portals Atomic Sum Operation . 23

2.7 Simple Put Example . 24

2.8 Portals LE Addressing Structures . 25

2.9 Portals ME Addressing Structures . 26

2.10 Non-Matching Portals Address Translation . 27

2.11 Matching Portals Address Translation . 29

3.1 Portals Operations and Event Types . 74

9

List of Tables

3.1 Object Type Codes . 35

3.2 Event Type Summary . 76

3.3 Event Field Definition . 78

3.4 Legal Atomic Operation, Datatype, and Function Combinations . 94

3.5 Portals Data Types . 110

3.6 Portals Functions . 112

3.7 Portals Return Codes . 113

3.8 Portals Constants . 114

4.1 Information Passed in a Send Request . 122

4.2 Information Passed in an Acknowledgment. 123

4.3 Information Passed in a “Counting” Acknowledgment . 123

4.4 Information Passed in a Get Request . 123

4.5 Information Passed in a Reply . 124

4.6 Information Passed in an Atomic Request . 124

4.7 Portals Operations and ME/LE Permission Flags . 126

10

List of Implementation Notes

1 No wire protocol . 20

2 Location of event queues and counting events . 21

3 Protected space . 21

4 Size of handle types . 36

5 Unique handles . 36

6 Memory descriptors that bind inaccessible memory . 52

7 Optimization for Duplicate Memory Descriptors . 55

8 List entries that bind inaccessible memory . 56

9 PtlLEUnlink() and unlinked handles . 61

10 Checking match_id Argument . 69

11 Completion of portals operations . 75

12 Size of event queue and reserved space . 79

13 PTL_INTERRUPTED return code . 81

14 Minimizing cost of counting events . 83

15 Portals Atomic Synchronization . 99

16 Ordering of Triggered Operations . 100

17 Purpose of Bundling . 108

11

Preface

In the early 1990s, when memory-to-memory copying speeds were an order of magnitude faster than the maximum

network bandwidth, it did not matter if data had to go through one or two intermediate buffers on its way from the

network into user space. This began to change with early massively parallel processing (MPP) systems, such as the

nCUBE-2 and the Intel Paragon, when network bandwidth became comparable to memory bandwidth. An

intermediate memory-to-memory copy now meant that only half the available network bandwidth was used.

Early versions of Portals solved this problem in a novel way. Instead of waiting for data to arrive and then copy it into

the final destination, Portals, in versions prior to 3.0, allowed a user to describe what should happen to incoming data

by using data structures. A few basic data structures were used like LegoTM blocks to create more complex

structures. The operating system kernel handling the data transfer read these structures when data began to arrive and

determined where to place the incoming data. Users were allowed to create matching criteria and to specify precisely

where data would eventually end up. The kernel, in turn, had the ability to DMA data directly into user space, which

eliminated buffer space in kernel owned memory and slow memory-to-memory copies. We named that approach

Portals Version 2.0. It was used until 2006 on the ASCI Red supercomputer, the first general-purpose machine to

break the one teraflops barrier.

Although very successful on architectures with lightweight kernels, such as ASCI Red, Portals 2.0proved difficult to

port to Cplant [4] with its full-featured Linux kernel. Under Linux, memory was no longer physically contiguous in a

one-to-one mapping with the kernel. This made it prohibitively expensive for the kernel to traverse data structures in

user space. We wanted to keep the basic concept of using data structures to describe what should happen to incoming

data. We put a thin application programming interface (API) over our data structures. We got rid of some never-used

building blocks, improved some of the others, and Portals 3.0 was born [5].

Portals 3.0 evolved over three revisions to Portals 3.3 [18]. In the interim, the system context has changed

significantly. Many newer systems are capable of offloading the vast majority of the Portals implementation to the

network interface. Indeed, the rapid growth of bandwidth and available silicon area relative to the small decrease in

memory latency has made it desirable to move latency sensitive tasks like Portals matching to dedicated hardware

better suited to it. The implementation of Version 3.3 on ASC Red Storm (Cray XT3/XT4/XT5) illuminated many

challenges that have arisen with these advances in technology. In this report, we document Version 4.0 as a response

to two specific challenges discovered on Red Storm. Foremost, while the performance of I/O buses has improved

dramatically, the latency to cross an I/O bus has not fallen as dramatically as processor, memory and network

performance has increased, negatively impacting target message rates. In addition, partitioned global address space

(PGAS) models have risen in prominence and require lighter weight semantics compared to message passing.

12

Nomenclature

ACK Acknowledgment.

FM Illinois Fast Messages.

AM Active Messages.

API Application Programming Interface. A definition of the functions and

semantics provided by library of functions.

ASCI Advanced Simulation and Computing Initiative.

ASC Advanced Simulation and Computing.

ASCI Red Intel TeraFLOPS system installed at Sandia National Laboratories. First

general-purpose system to break the one teraflops barrier.

CPU Central Processing Unit.

DMA Direct Memory Access.

EQ Event Queue.

FIFO First In, First Out.

FLOP Floating Point OPeration. (Also FLOPS or flops: Floating Point OPera-

tions per Second.)

GM Glenn’s Messages; Myricom’s Myrinet API.

ID Identifier.

Initiator A process that initiates a message operation.

IOVEC Input/Output Vector.

LE List Entry.

MD Memory Descriptor.

ME Matching list Entry.

Message An application-defined unit of data that is exchanged between processes.

Message Operation Either a put operation, which writes data to a target , or a get operation,

which reads data from a target , or an atomic operation, which updates

data atomically.

MPI Message Passing Interface.

MPP Massively Parallel Processor.

NAL Network Abstraction Layer.

NAND Bitwise Not AND operation.

Network A network provides point-to-point communication between nodes. In-

ternally, a network may provide multiple routes between endpoints (to

improve fault tolerance or to improve performance characteristics); how-

ever, multiple paths will not be exposed outside of the network.

NI Abstract portals Network Interface.

NIC Network Interface Card.

Node A node is an endpoint in a network. Nodes provide processing capa-

bilities and memory. A node may provide multiple processors (an SMP

node). A node may also act as a gateway between networks.

OS Operating System.

PM Message passing layer for SCoreD [11].

POSIX Portable Operating System Interface.

Process A context of execution. A process defines a virtual memory context. This

context is not shared with other processes. Several threads may share the

virtual memory context defined by a process.

RDMA Remote Direct Memory Access.

RMPP Reliable Message Passing Protocol.

13

SMP Shared Memory Processor.

SUNMOS Sandia national laboratories/University of New Mexico Operating Sys-

tem.

Target A process that is acted upon by a message operation.

TCP/IP Transmission Control Protocol/Internet Protocol.

Thread A context of execution that shares a virtual memory context with other

threads.

UDP User Datagram Protocol.

UNIX A multiuser, multitasking, portable OS.

VIA Virtual Interface Architecture.

14

Chapter 1

Introduction

1.1 Overview

This document describes the Portals network programming interface for communication between nodes in a system

area network. Portals is designed to provide the building blocks necessary to create a diverse set of scalable, high

performance application programming interfaces and language support run-times. The Portals API is designed to

support a machine with two million or more cores.

This document is divided into several sections:

Section 1 – Introduction.

The purpose and scope of the Portals API

Section 2 – An Overview of the Portals 4.0 API.

A brief overview of the Portals API, introducing the key concepts and terminology used in the description of

the API

Section 3 – The Portals 4.0 API.

The functions and semantics of the Portals API in detail

Section 4 – Guide to Implementors.

A guide to implementors, highlighting subtleties of the standard that are critical to an implementation’s design

Appendix A – Portals Design Guidelines.

The guiding principles behind the Portals API design

Appendix B – README-template.

A template for a README file to be provided by each implementation

Appendix C – Summary of Changes.

A list of changes between versions since Portals 3.3

1.2 Purpose

Portals aims to provide a scalable, high performance interface network programming interface for High Performance

Computing (HPC) systems. Portals provides an interface to support both the Message Passing Interface (MPI) [14]

standard as well as the various partitioned global address space (PGAS) models, such as Unified Parallel C (UPC),

Co-Array Fortran (CAF), and SHMEM [9]. While neither MPI nor PGAS models impose specific scalability

limitations, many network programming interfaces do not provide the functionality needed to allow implementations

of either model to reach scalability and performance goals.

The following are required properties of a network architecture to avoid scalability limitations:

15

• Connectionless – Many connection-oriented architectures, such as InfiniBand [10], VIA [8] and TCP/IP

sockets, have practical limitations on the number of peer connections that can be established. In large-scale

parallel systems, any node must be able to communicate with any other node without costly connection

establishment and tear down.

• Network independence – Many communication systems depend on the host processor to perform operations in

order for messages in the network to be consumed. Message consumption from the network should not be

dependent on host processor activity, such as the operating system scheduler or user-level thread scheduler.

Applications must be able to continue computing while data is moved in and out of the application’s memory.

• User-level flow control – Many communication systems manage flow control internally to avoid depleting

resources, which can significantly impact performance as the number of communicating processes increases.

While Portals provides building blocks to enable flow control (See Section 2.7), it is the responsibility of the

application to manage flow control. An application should be able to provide final destination buffers into

which the network can deposit data directly.

• OS bypass – High performance network communication should not involve memory copies into or out of a

kernel-managed protocol stack. Because networks are now as fast as memory buses, data has to flow directly

into user space.

The following are properties of a network architecture that avoid scalability limitations for an implementation of

MPI:

• Receiver-managed – Sender-managed message passing implementations require a persistent block of memory

to be available for every process, requiring memory resources to increase with job size.

• User-level bypass (application bypass) – While OS bypass is necessary for high performance, it alone is not

sufficient to support the progress rule of MPI asynchronous operations. After an application has posted a

receive, data must be delivered and acknowledged without further intervention from the application.

• Unexpected messages – Few communication systems have support for receiving messages for which there is no

prior notification. Support for these types of messages is necessary to avoid flow control and protocol overhead.

1.3 Background

Portals was originally designed for and implemented on the nCUBE-2 machine as part of the SUNMOS

(Sandia/UNM OS) [13] and Puma [19] lightweight kernel development projects. Portals went through three design

phases [17], with the most recent one being used on the 13000-node (38,400 cores) Cray Red Storm [2] that became

the Cray XT3/XT4/XT5 product line. Portals has been very successful in meeting the needs of such large machines,

not only as a layer for a high-performance MPI implementation [7], but also for implementing the scalable run-time

environment and parallel I/O capabilities of the machine.

The third-generation Portals implementation was designed for a system where the work required to process a

message was long relative to the round trip between the application and the Portals data structures. However, in

modern systems where processing is offloaded onto the network interface, the time to post a receive is dominated by

the round trip across the I/O bus. This latency has become large relative to message latency and per message

overheads (gap). This limitation was exposed by implementations on the Cray Red Storm system. Version 4.0 of

Portals addresses this problem by adding the building blocks necessary to support the concept of unexpected

messages. The second limitation exposed on Red Storm was the relative weight of handling newer PGAS

programming models. PGAS programming models do not need the extensive matching semantics required by MPI

and I/O libraries and can achieve significantly lower latency and higher message throughput without matching.

Version 4.0 of Portals adds a lightweight, non-matching interface to support these semantics as well as lightweight

events and acknowledgments. Finally, version 4.0 of Portals reduces the overheads in numerous implementation

paths by simplifying events, reducing the size of acknowledgments, and generally specializing interfaces to eliminate

functionality that experience has shown to be unnecessary.

16

1.4 Scalability

The primary goal in the design of Portals is scalability. Portals is designed specifically for an implementation capable

of supporting a parallel job running on two million processing cores or more. Performance is critical only in terms of

scalability. That is, the level of message passing performance is characterized by how far it allows an application to

scale and not by how it performs in micro-benchmarks (e.g., a two-node bandwidth or latency test).

The Portals API is designed to allow for scalability, not to guarantee it. Portals cannot overcome the shortcomings of

a poorly designed application program. Applications that have inherent scalability limitations, either through design

or implementation, will not be transformed by Portals into scalable applications. Scalability must be addressed at all

levels. Portals does not inhibit scalability and it does not guarantee it either. No Portals operation requires global

communication or synchronization.

Similarly, a quality implementation is needed for Portals to be scalable. A non-scalable implementation, underlying

network protocol, or hardware will result in a non-scalable Portals implementation and application.

To support scalability, the Portals interface maintains a minimal amount of state. By default, Portals provides reliable,

ordered delivery of messages between pairs of processes. Portals is connectionless: a process is not required to

explicitly establish a point-to-point connection with another process in order to communicate. Moreover, all buffers

used in the transmission of messages are maintained in user space. The target process determines how to respond to

incoming messages, and messages for which there are no buffers are discarded.

1.5 Communication Model

Portals combines the characteristics of both one-sided and two-sided communication. In addition to more traditional

“put” and “get” operations, they define “matching put” and “matching get” operations. The destination of a put (or

send) is not an explicit address; instead, messages target list entries (potentially with matching semantics or an offset)

using the Portals addressing semantics that allow the receiver to determine where incoming messages should be

placed. This flexibility allows Portals to support both traditional one-sided operations and two-sided send/receive

operations.

Portals allows the target to determine whether incoming messages are acceptable. A target process can choose to

accept message operations from a specific process or all processes, in addition to the ability to limit messages to a

specified initiator user id.

1.6 Zero Copy, OS Bypass, and Application Bypass

In traditional system architectures, network packets arrive at the network interface card (NIC), are passed through one

or more protocol layers in the operating system, and are eventually copied into the address space of the application.

As network bandwidth began to approach memory copy rates, reduction of memory copies became a critical concern.

This concern led to the development of zero-copy message passing protocols in which message copies are eliminated

or pipelined to avoid the loss of bandwidth.

A typical zero-copy protocol has the NIC generate an interrupt for the CPU when a message arrives from the

network. The interrupt handler then controls the transfer of the incoming message into the address space of the

appropriate application. The interrupt latency, the time from the initiation of an interrupt until the interrupt handler is

running, is fairly significant. To avoid this cost, some modern NICs have processors that can be programmed to

implement part of a message passing protocol. Given a properly designed protocol, it is possible to program the NIC

to control the transfer of incoming messages without needing to interrupt the CPU. Because this strategy does not

need to involve the OS on every message transfer, it is frequently called “OS bypass.” ST [20], VIA [8], FM [12],

17

GM [16], PM [11], and Portals are examples of OS bypass mechanisms.

Many protocols that support OS bypass still require that the application actively participates in the protocol to ensure

progress. As an example, the long message protocol of PM requires that the application receive and reply to a request

to put or get a long message. This complicates the runtime environment, requiring a thread to process incoming

requests, and significantly increases the latency required to initiate a long message protocol. Portals does not require

activity on the part of the application to ensure progress. We use the term “application bypass” to refer to this aspect

of Portals.

1.7 Faults

Reliable message transmission is challenging in modern high performance computing systems due to system scale,

component failure rates, and application run-times. The Portals API recognizes that the underlying transport may not

be able to successfully complete an operation once it has been initiated. This is reflected in the fact that the Portals

API reports an event indicating the completion of every operation. Completion events indicate whether the operation

completed successfully or not.

18

Chapter 2

An Overview of the Portals API

In this chapter, we provide an overview of the Portals API and associated semantics. Detailed API functions and

option definitions are presented in the next chapter.

2.1 Data Movement

A portal represents an opening in the address space of a process. Other processes can use a portal to read (get), write

(put), or perform an atomic operation on the memory associated with the portal. Every data movement operation

involves two processes, the initiator and the target . The initiator is the process that initiates the data movement

operation. The target is the process that responds to the operation by accepting the data for a put operation, replying

with the data for a get operation, or updating a memory location for, and potentially responding with the result from,

an atomic operation.

In this discussion, activities attributed to a process may refer to activities that are actually performed by the process or

on behalf of the process. The inclusiveness of our terminology is important in the context of application bypass. In

particular, when we note that the target sends a reply in the case of a get operation, this is performed by Portals

without the explicit involvement of the application. An implementation of Portals may use dedicated hardware, a

operating system driver, a progress thread running in the application process, or some other option to generate the

reply.

Figure 2.1 shows the graphical conventions used throughout this document. Some of the data structures created

through the Portals API reside in user space to enhance scalability and performance, while others are kept in

protected space for protection and to allow an implementation to place these structures into host or NIC memory. We

use colors to distinguish between these elements.

Figure 2.1. Graphical Conventions: Symbols, colors, and stylistic conven-

tions used in the diagrams of this document.

Figures 2.2, 2.3, 2.4, and 2.5 present graphical interpretations of the Portals data movement operations: put (send),

get, and atomic (the swap atomic is shown). In the case of a put operation, the initiator sends a put request ➀ message

to the target . The target translates the portal addressing information in the request using its local portals structures.

The data may be part of the same packet as the put request or it may be in separate packet(s) as shown in Figure 2.2.

The Portals API does not specify a wire protocol. When the data ➁ has been put into the remote memory descriptor

19

(or been discarded), the target optionally sends an acknowledgment ➂ message.

IMPLEMENTATION

NOTE 1:
No wire protocol

This document does not specify a wire protocol. Portals requires a

reliable communication layer with the semantics and progress rules

specified in this document. Implementors are left great freedom in

implementation design choices.

Figure 2.2. Portals Put (Send): Note that the put request ➀ is part of the

header and the data ➁ is part of the body of a single message. Depending on the

network hardware capabilities, the request and data may be sent in a single large

packet or several smaller ones.

Figure 2.2 represents several important concepts in Portals 4.0. First, a message targets a logical network interface

and a user may instantiate up to four logical network interfaces associated with a single physical network interface. A

portals physical network interface is a per-process abstraction of a physical network interface (or group of interfaces).

Logical network interfaces may be matching or non-matching and addressed by either logical (rank) or physical

(nid/pid) identifiers. As indicated in Figure 2.2, separate logical network interfaces have independent resources. The

second important concept illustrated in Figure 2.2 is that each portal table entry has three data structures attached: an

event queue, a priority list, and an overflow list. The final concept illustrated in Figure 2.2 is that the overflow list is

traversed after the priority list. If a message does not match in the priority list (matching interface) or it is empty

(either interface), the overflow list is traversed.

20

Figure 2.2 illustrates another important Portals concept. The space the Portals data structures occupy is divided into

protected and application (user) space, while the large data buffers reside in user space. Most of the Portals data

structures reside in protected space. Often the Portals control structures reside inside the operating system kernel or

the network interface card. However, they can also reside in a library or another process. See implementation note 2

for possible locations of the event queues.

IMPLEMENTATION

NOTE 2:
Location of event queues and counting events

Note that data structures that can only be accessed through the API,

such as counting events and event queues, are intended to reside in

user space. However, an implementation is free to place them

anywhere it wants.

IMPLEMENTATION

NOTE 3:
Protected space

Protected space as shown for example in Figure 2.2 does not mean it

has to reside inside the kernel or a different address space. The

Portals implementation must guarantee that no alterations of Portals

structures by the user can harm another process or the Portals

implementation itself.

Figure 2.3 is a representation of a get operation from a target that does matching. The corresponding get from a

non-matching target is shown in Figure 2.4. First, the initiator sends a request ➀ to the target . As with the put

operation, the target translates the portals addressing information in the request using its local portals structures.

Once it has translated the portals addressing information, the target sends a reply➁ that includes the requested data.

Figure 2.3. Portals Get from a match list entry.

Portals address translation (matching and permissions checks) is only performed at the target of an operation.

Acknowledgments for put and atomic and replies to get and atomic operations bypass the portals address translation

structures at the initiator . Acknowledgments and replies may only be generated as the result of an action by the

initiator and therefore do not require the level of protection required at the target .

21

Figure 2.4. Portals Get from a list entry. Note that the first LE will be selected

to reply to the get request.

The third operation type, atomic, is depicted in Figure 2.5 for the swap operation and Figure 2.6 for a summation.

Figure 2.5. Portals Atomic (swap is shown). An atomic swap in memory

described by a match list entry using an initiator-side operand.

For the swap operation shown in Figure 2.5, the initiator sends a request ➀, containing the put data and the operand

value ➁, to the target . The target traverses the local portals structures based on the information in the request to find

the appropriate user buffer. The target then sends the get data in a reply message ➂ back to the initiator and deposits

the put data in the user buffer.

The sum operation shown in Figure 2.6 adds the put data into the memory region described by the list entry. The

figure shows an optional acknowledgment sent back. The result of the summation is not sent back, since the initiator

22

Figure 2.6. Portals Atomic (sum is shown). An atomic sum operation in

memory described by a list entry.

used PtlAtomic() instead of PtlFetchAtomic().

2.2 Usage

Some of the diagrams presented in this chapter may seem daunting at first sight. However, many of the diagrams

show all possible options and features of the Portals building blocks. In actual use, only some of them are needed to

accomplish a given function. Rarely will they all be active and used at the same time.

Figure 2.2 shows the complete set of options available for a put operation. In practice, a diagram like Figure 2.7 is

much more realistic. It shows the Portals structures used to setup a one-sided put operation. A user of Portals needs

to specify an initiator region where the data is to be taken from, and an unmatched target region to put the data.

Offsets can be used to address portions of each region; e.g., a word at a time, and an event queue or a counting event

inform the user when an individual transfer has completed.

Another example is Figure 2.6 which is simpler than Figure 2.5 and probably more likely to be used in practice.

Atomic operations, such as the one in Figure 2.6 are much more likely to use a single unmatched target region. Such

simple constructs can be used to implement global reference counters, or access locks.

2.3 Completion Events

Portals provides two mechanisms for recording completion events: full events (Section 3.13) and counting events

(Section 3.14). Full events provide a complete picture of the transaction, including what type of event occurred,

which buffer was manipulated, and identifying any errors that occurred. The full event can also carry a small amount

of local data and, on the target, a small amount of out-of-band header data. Counting events, on the other hand, are

designed to be lightweight and provide only a count of successful and failed operations (or successful bytes

delivered). The delivery of events (full events or counting events) may be manipulated when creating a number of

other structures.

23

Figure 2.7. Simple Put Example: Not every option or Portals feature is needed

to accomplish simple tasks such as the transfer of data from an initiator region to

a target region.

2.4 Portals Addressing

One-sided data movement models (e.g., SHMEM [9], ST [20], and MPI-2 [15]) typically use a process identifier and

remote address to identify a memory address on a remote node. In some cases, the remote address is specified as a

memory buffer identifier and offset. The process identifier identifies the target process, the memory buffer identifier

specifies the region of memory to be used for the operation, and the offset specifies an offset within the memory

buffer.

Portals lists provide one-sided addressing capabilities. Portals list entries serve as a memory buffer identifier that may

be persistent or optionally removed from the list after a single use. Traditional one-sided addressing capabilities have

proven to be a poor fit for tagged messaging interfaces, such as the Message Passing Interface [6]. To overcome these

limitations, Portals also supports match list entries, which include additional semantics for receiver-managed data

placement. Matching semantics are discussed in Section 2.4.2.

In addition to matching a pre-posted list entry, an incoming message also must pass a permissions check. The

permissions check is not a component of identifying the correct buffer. It is only applied after the correct buffer has

been identified. The permissions check has two components: the target of the message must allow the initiator to

access the buffer and must allow the specified operation type. Each list entry and match list entry specifies which

types of operations are allowed—put and/or get—as well as a user ID that can be used to identify which initiators are

allowed to access the buffer. A failure of the permissions check for an incoming message does not modify the Portals

state in any way, except to update the status registers (see Section 3.3.7), and the message itself is discarded.

Figures 2.8 and 2.9 are graphical representations of the structures used by a target in the interpretation of a portals

address. The initiator’s physical network interface and the specified target node identifier are used to route the

message to the appropriate node and physical network interface. This logic is not reflected in the diagrams. The

initiator’s logical network interface and the specified target process ID1 are used to select the correct target process

and the logical network interface. Each logical network interface includes a single portal table used to direct message

delivery.

1A logical rank can be substituted for the combination of node ID and process ID when logical endpoint addressing is used.

24

Figure 2.8. Portals Non-Matching Addressing Structures: The example

shows the flow of information for a non-matched request at a target. Various

pieces of information from the incoming header flow to the Portals structures

where they are needed to process the request.

Discussion: Portals loosely defines the concept of a physical network interface. A physical network

interface may be a single hardware network interface or it may represent a collection of hardware

network interfaces, with multi-rail support implemented within the Portals implementation.

For example, in a system like BlueGene/L [1], an implementation may expose a physical network

interfaces for the high speed network and another physical network interface for the Ethernet support and

I/O network. On the other hand, a system with multiple InfiniBand HCAs may choose to expose a single

physical network interface which load balances between the hardware interfaces. In both cases, a portal

table will be created for each initialized logical network interface over each physical network interface

for each process.

An initiator-specified portal index is used to select an entry in the portal table. Each entry of the portal table identifies

three lists and, optionally, an event queue. The priority list and overflow list provide lists of remotely accessible

address regions. Applications may append new list entries to either list, allowing complex delivery mechanisms to be

built. Incoming messages are first processed according to the priority list and, if no matching entry was found in the

priority list, are then processed according to the overflow list. In addition to providing an insertion point in the middle

of the combined list structures by allowing insertions at the end of both the priority and overflow lists, the overflow

list carries additional semantics to allow unexpected message processing.

The third list that is associated with each portal index is more transparent to the user and provides the building blocks

for supporting unexpected messages. Each time a message is delivered into the overflow list, its header is linked into

the unexpected list. The user can not insert a header into the unexpected list, but can search the list for matching

entries and, optionally, delete the matching entries from the list. Further, when a new list entry is appended to the

priority list, the unexpected list is first searched for a match. If a match is found (i.e., had the list entry been on the

priority list when the message arrived, the message would have been delivered into that list entry), the list entry is not

inserted, the header is removed from the unexpected list, and the application is notified a match was found in the

unexpected list. A list entry in the overflow list may disable the use of the unexpected list for messages delivered into

that list entry. All unexpected messages associated with a list entry must be handled by posting matching list entries

in the priority list or searching and deleting prior to PtlLEUnlink() or PtlMEUnlink() successfully unlinking the

25

Figure 2.9. Portals Matching Addressing Structures: The example shows

the flow of information for a matched request at a target. Various pieces of in-

formation from the incoming header flow to the Portals structures where they are

needed to process the request.

overflow list entry. Unlike incoming messages, no permissions check is performed during the search of the

unexpected queue. Therefore, the user is responsible for ensuring that the overflow list provides sufficient protection

to memory and any further permissions checks must be performed by the user based on the overflow event data.

Each data manipulation event (e.g., PTL_EVENT_PUT) has a corresponding overflow event (e.g.,

PTL_EVENT_PUT_OVERFLOW) which is generated when a matching header is found in the unexpected list during list

entry insertion. The overflow full event includes sufficient information (event type, start address, length, etc.) to

determine what operation occurred and where the data was delivered into the overflow list. If the mlength in the full

event is less than the rlength, the message was truncated. It is the responsibility of the application to retrieve the

message body, if necessary.

If the incoming message is not delivered into either the priority or overflow list and flow control is not enabled on the

portal table entry, the message is discarded and the PTL_SR_DROP_COUNT status register is incremented (see

Section 3.3.7). If flow control is enabled on the portal table entry, flow control is triggered and a PTL_PT_FLOWCTRL

full event is generated in the event queue associated with the portal table entry (see Section 2.7).

In typical scenarios, MPI point-to-point communication uses the matching interface and full events, while SHMEM

uses the non-matching interface and lightweight counting events. The overflow list may act as either a building block

for handling MPI unexpected messages (when the unexpected list is enabled) or as a mechanism for allowing

insertion into the middle of a list (when the unexpected list is disabled).

2.4.1 Lists and List Entries

Lists and list entries provide semantics similar to that found in traditional one-sided interfaces. List entries identify a

memory region as well as an optional counting event. The memory region specifies the memory to be used in the

operation, and the counting event is optionally used to record the occurrence of operations. Information about the

26

operations is (optionally) recorded in the event queue attached to the portal table entry.

Figure 2.10. Non-Matching Portals Address Translation.

Figure 2.10 shows the logical flow of address translation on a non-matching logical network interface. The first list

entry (LE) in a list always matches. Authentication is provided through fields associated with the LE and act as

permission fields, which can cause the operation to fail. An operation can fail to fit in the region provided and, if so,

will be truncated. Other semantics provided by match list entries—such as locally managed offsets—are not

supported. The overflow list is checked after the priority list, if necessary. The non-matching translation path has the

same event semantics as a matching interface. The important difference between the non-matching interface and the

matching interface is that the address translation semantics for the non-matching interface have no loops. This allows

fully pipelined operation for the non-matching address translation.

Discussion: List entries may be persistent or automatically unlink after first use. Implementations may

be able to provide much higher message rates if the priority list contains a persistent list entry at the head

of the list. One-sided programming interfaces such as SHMEM and MPI-2 one-sided should be able to

take advantage of this performance gain.

27

2.4.2 Match Lists and Match List Entries

In addition to the standard address components (process identifier, memory buffer identifier, and offset), a portals

address can include information identifying the initiator (source) of the message and a set of match bits. This

addressing model is appropriate for supporting traditional two-sided message passing operations. Specifically, the

Portals API provides the flexibility needed for an efficient implementation of MPI-1, which defines two-sided

operations, with one-sided completion semantics.

For a matching logical network interface, each match list entry specifies two bit patterns: a set of “do not care” bits

(ignore bits) and a set of “must match” bits (match bits). Along with the source node ID (NID) and the source process

ID (PID), these bits are used in a matching function to select the correct match list entry. In addition, if truncation is

disabled (PTL_ME_NO_TRUNCATE is set), the message must fit in the buffer. If the message does not fit, the message

does not match that entry and matching continues with the next entry.

In addition to initiator-specified offsets, match list entries also support locally managed offsets, which allow efficient

packing of multiple messages into a single match list entry. When locally managed offsets are enabled, the

initiator-specified offset is ignored. A match list entry may additionally specify a minimum available space threshold

(min_free), after which a persistent match list entry is automatically unlinked. The combination of locally managed

offsets, minimum free thresholds, and overflow list semantics allow for the efficient implementation of MPI

unexpected messages.

Figure 2.11 illustrates the steps involved in translating a portals address when matching is enabled, starting from the

first element in a priority list. If the match criteria specified in the match list entry are met, the permissions check

passes, and the match list entry accepts the operation, the operation (put, get, or atomic) is performed using the

memory region specified in the match list entry. Note that matching is done using the match bits, ignore bits, and

either the node identifier and process identifier or the .

If the match list entry specifies that it is to be unlinked based on the min_free semantic or if it is a use once match list

entry, the match list entry is removed from the match list, and the resources associated with the match list entry are

reclaimed. If there is an event queue specified in the portal table entry and the match list entry accepts the full event,

the operation is logged in the event queue. An event is delivered when no more actions, as part of the current

operation, will be performed on this match list entry.

If the match criteria specified in the match list entry are not met, the address translation continues with the next match

list entry. If the end of the priority list has been reached, address translation continues with the overflow list. Once a

matching match list entry has been identified, if the permissions check fails or the match list entry rejects the

operation, the matching ceases and the message is dropped without modifying the list state.

2.5 Modifying Data Buffers

Users pass data buffers into the Portals implementation as either a source of data or the destination of data. For

buffers where data is being delivered (e.g. at the target, or in a reply buffer at the initiator), the Portals API allows

user memory to be used as a scratch space as long as the operation is larger that max_atomic_size. That means an

implementation can utilize user memory as scratch space and staging buffers for operations larger than this threshold.

When the operation is larger than max_atomic_size, the user memory is not guaranteed to reflect exactly the data that

has arrived until the operation succeeds and the event is delivered. In fact, for operations larger than max_atomic_size,

the memory may be changed in unpredictable ways while the operation is progressing. Once the operation completes,

the memory associated with the operation will not be subject to further modification (from this operation). Notice

that unsuccessful operations may alter memory used to receive data in an essentially unpredictable fashion.

The Portals API explicitly prohibits modifying the buffer passed into a put. Similarly, an implementation must not

alter data in a user buffer that is used in a reply operation. This is independent of whether the operation succeeds or

fails.

28

Figure 2.11. Matching Portals Address Translation.

29

2.6 Ordering

There are two types of ordering typically defined by higher-level languages and message passing APIs: message

ordering and data ordering. The message ordering definition controls the order in which messages are processed by

the match engine between a pair of endpoints. The data ordering definition controls the order of data delivery into

memory. Message and data ordering are complex subjects with a variety of high-level definitions in programming

languages and message passing APIs. As such, Portals has a variety of options to control message and data ordering.

As a general overview, Portals guarantees byte-granularity data ordering for short messages between a pair of

endpoints when targeting a specific list entry or match list entry. For all messages regardless of size, message

ordering is provided unless it is disabled using the PTL_MD_UNORDERED option in the ptl_md_t. This supports the MPI

two-sided message ordering requirements while providing the flexibility to disable ordering when it is not needed.

2.6.1 Short Message Ordering Semantics

The default ordering semantics for Portals messages differ for short and long messages. The threshold between

“short” and “long” is defined by two parameters, the maximum write-after-write size (max_waw_ordered_size) and

the maximum write-after-read size (max_war_ordered_size). Both parameters are controlled by the desired and

actual arguments of PtlNIInit(). Note that replies and acknowledgments do not require ordering.

When one message that stores data (put, atomic) is followed by a message that stores data or retrieves data (put,

atomic, get) from the same initiator to the same target and both messages are less than the max_waw_ordered_size in

length, a byte from the second message that targets the same offset within the same LE (or ME) as a byte from the

first message will perform its access after the byte from the first message. Similarly, when one message that retrieves

data (get) is followed by a second message that stores data (put, atomic) from the same initiator to the same target and

both messages are less than max_war_ordered_size in length, a byte from the second message that targets the same

offset within the same LE (or ME) as a byte from the first message will perform its access after the byte from the first

message.

The order in which individual bytes of a single message are delivered is always unspecified. The order in which

non-overlapping bytes of two different messages is not specified unless the implementation sets the

PTL_TOTAL_DATA_ORDERING option in the actual features limits field. When total data ordering is provided and the

short message constraints are met, the first message must be entirely delivered before any part of the second message

is delivered. Support for the ordering of bytes between messages is an optional feature, since some implementations

may be unable to provide such strict ordering semantics.

2.6.2 Long Message Ordering Semantics

The default ordering semantics for Portals messages that have a length that is longer than the max_waw_ordered_size

(or max_war_ordered_size, as appropriate) are much weaker. For long messages, the ordering semantics only require

that messages sent between a pair of processes are matched at the target in the order they were sent. The underlying

implementation is free to deliver the body of two messages in whatever order is necessary. This provides additional

flexibility to the underlying implementation. For example, the implementation can use a retransmission protocol that

only retransmits a portion of a lost message without violating ordering. Similarly, an implementation is free to use

adaptive routing to deliver the body of the message. Note that replies and acknowledgments do not require ordering.

Discussion: The specified ordering semantics of Portals are not necessarily sufficient to allow a

shmem_fence() operation to be treated as a no-op. Portals only guarantees ordering semantics

sufficient for shmem_fence() to be a no-op when PTL_TOTAL_DATA_ORDERING is returned in

the options field of the actual limits and the operations are both shorter than max_waw_ordered_size.

30

2.6.3 Relative Ordering of Operations in Overlapping Portals

The result of two simultaneous operations targeting the same memory address through different list entries is

undefined. The result of a put or atomic operation transferring data from a memory location (within a memory

descriptor) which is currently the target of a remote operation (within a list entry) is also undefined. Data is only

available for transmit after the event corresponding to the arriving message has been delivered. Triggered operations

are safe, since they do not trigger until the counting event is delivered.

2.6.4 Ordering of Unexpected Messages

Unexpected messages pose a particular challenge for ordering semantics. The unexpected list maintains insertion

ordering, although entries in the middle of the list may be removed first based on matching criteria. Data delivery into

the overflow list entry which generated the entry in the unexpected list is ordered according to the previously defined

rules within that list entry, but have no ordering relative to other list entries.

2.6.5 Relaxing Message Ordering

In many modern networks, adaptive routing can be used to improve the overall network throughput. For these

networks, it may be useful for the application to express to the implementation when it is possible to relax the

ordering on messages. Portals provides two mechanisms to relax ordering. First, when the application calls

PtlNIInit(), it can specify a max_waw_ordered_size and max_war_ordered_size of zero in ptl_ni_limits_t (see

Sections 3.6.1 and 3.6.2). This informs the application that data ordering is not needed (e.g. in the two sided

semantics for MPI). Second, the application can set the PTL_MD_UNORDERED option on the ptl_md_t used to send the

data (see Section 3.10). This turns off both message and data ordering.

2.7 Flow Control

Historically, on some large machines, MPI over Portals has run into problems where the number of unexpected

messages has caused the exhaustion of event queue space or buffer space set aside for unexpected messages. MPI

implementations over past versions of Portals have handled the overflow by aborting the application. Other networks,

such as InfiniBand, use “receiver not ready” NACKs and retransmits at the hardware level. Unfortunately, this is

known to prohibit parallelism in the NIC and is detrimental to InfiniBand performance in some areas. In attempting

to address this challenge, Portals 4.0 adopts the philosophy that resource exhaustion is an exceptional operating mode

and recovery may be slow, but must be possible.

When resources are exhausted, whether they are user allocated resources like EQ entries or implementation level

resources, the implementation may choose to block new message processing for a constrained amount of time. If the

resources remain exhausted, the behavior of Portals depends on the type of operation which caused the exhaustion

and, potentially, options set by the user.

A local operation which generates events (such as a call to PtlLEAppend() or PtlMEAppend()) or a response from a

target-side operation (such as an acknowledgement or reply) is not required to trigger flow control and may cause the

event queue to overflow, resulting in dropped events. An implementation may chose to trigger flow control for local

operations, but is not required to do so.

Discussion: The user must use some care when posting a new list entry to ensure that local events do

not overflow the event queue. A sufficiently large event queue, drained before posting the list entry, will

provide sufficient protection. Implementations may choose to perform more resource exhaustion

checking to prevent overflowing the event queue, but are not required to do so.

31

A target-side operation (such as the processing of an incoming put or get operation) which targets a portal table entry

on which the PTL_PT_FLOWCTRL option has not been set will not trigger flow control. If the message failed to match

in the priority or overflow lists or the message matched in the overflow list and unexpected headers list is full, the

message will be dropped, with the PTL_SR_DROP_COUNT status register incremented as specified in Section 2.4. An

acknowledgement or reply event will not be generated in this case. If the constrained resource was an event queue,

the message will be delivered and any acknowledgement or reply will be generated, but the target-side event will be

lost. If there is no space remaining in the unexpected headers list, the incoming message will not match any list

entries in the overflow list, which will cause the message to be dropped as described previously.

A target-side operation (such as the processing of an incoming put or get operation) which targets a portal table entry

on which the PTL_PT_FLOWCTRL option has been set will trigger flow control. When flow control is triggered, the

implementation must disable the portal table entry and deliver a PTL_EVENT_PT_DISABLED full event to the

application (See Implementation Note 12). At this point, all messages targeting that portal table entry for that process

must be dropped until PtlPTEnable() is called, including the message that caused the flow control event. Messages

that are dropped due to a flow control event do not modify any portion of the buffer described by the target list entry

or match list entry. In addition, the PTL_EVENT_ACK or PTL_EVENT_REPLY event associated with that message (and

subsequent in flight messages) indicate failure. The ni_fail_type of any generated full event must be

PTL_NI_PT_DISABLED.

Discussion: It is important to note that remote flow control failure notification is only delivered to the

initiator of an operation in the PTL_EVENT_ACK or PTL_EVENT_REPLY event; thus, it is necessary

for a user to request acknowledgments at the initiator to be notified of a flow control situation.

While any internal, potentially implementation specific, resource exhaustion can cause a flow control event, three

Portals level resource exhaustion types must cause a flow control event when they occur. If flow control is enabled,

the following three scenarios must invoke flow control. First, if an event queue attached to a portal table entry is full

and the message would generate a full event, flow control must be invoked. Second, if a message arrives at a portal

table entry and does not find a match in either the priority list or the overflow list, flow control must be invoked.

Finally, if the space available to buffer unexpected message headers is exhausted (e.g. as indicated by

max_unexpected_headers), flow control must be invoked.

Discussion: The application must be involved in flow control recovery. The difficulty in recovering is

largely driven by the ordering constraints of the application. Interfaces with loose ordering semantics

(such as GASNet) may be able to reduce resource utilization and re-enable a portal table entry without

any global communication. Strictly ordered interfaces, such as MPI, must quiesce the library, ensure that

resources are available, reach a global consensus that the network is quiesced (likely using another portal

table entry for communication), re-enable the portal table entry, and restart communication. Quiescing

the library requires the MPI library to insure that no more messages are in flight targeting the node that

has experienced resource exhaustion. Making resources available involves draining all full events from

the event queue associated with the portal table entry, replenishing the user allocated buffers on the

overflow list, and draining unexpected messages from the Portals implementation.

2.8 Multi-Threaded Applications

The Portals API supports a generic view of multi-threaded applications. From the perspective of the Portals API, an

application program is defined by a set of processes. Each process defines a unique address space. The Portals API

defines access to this address space from other processes (using portals addressing and the data movement

operations). A process may have one or more threads executing in its address space.

With the exception of waiting (PtlEQWait(), PtlCTWait()), polling (PtlEQPoll(), PtlCTPoll()), portal table

manipulation functions (PtlPTDisable(), PtlPTEnable()), and some allocation routines (such as PtlCTAlloc(),

32

PtlCTFree(), PtlEQAlloc(), PtlEQFree(), PtlMEUnlink()), every function in the portals API is non-blocking. Every

function in the Portals API is atomic with respect to both other threads and external operations that result from data

movement operations. While individual operations are atomic, sequences of these operations may be interleaved

between different threads and with external operations. In other words, calls into the Portals API are thread safe. The

Portals API does not provide any mechanisms to control this interleaving. It is expected that these mechanisms will

be provided by the API used to create threads.

33

34

Chapter 3

The Portals API

3.1 Naming Conventions and Typeface Usage

The Portals API defines four types of entities: functions, types, return codes, and constants. Functions always start

with Ptl and use mixed upper and lower case. When used in the body of this report, function names appear in sans

serif bold face, e.g., PtlInit(). The functions associated with an object type will have names that start with Ptl,

followed by the two letter object type code shown in column yy in Table 3.1. As an example, the function

PtlEQAlloc() allocates resources for an event queue.

Table 3.1. Object Type Codes.

yy xx Name Section

NI ni Network Interface 3.6

PT pt Portal Table Entry 3.7

MD md Memory Descriptor 3.10

LE le List Entry 3.11

ME me Matching list Entry 3.12

EQ eq Event Queue 3.13

CT ct Count 3.14

Type names use lower case with underscores to separate words. Each type name starts with ptl_ and ends with _t.

When used in the body of this report, type names appear like this: ptl_match_bits_t.

Return codes start with the characters PTL_ and appear like this: PTL_OK.

Names for constants use upper case with underscores to separate words. Each constant name starts with PTL_. When

used in the body of this report, constant names appear like this: PTL_ACK_REQ.

The definition of named constants, function prototypes, and type definitions must be supplied in a file named

portals4.h that can be included by programs using Portals. Implementations should also provide a README file

that explains implementation specific details. For example, it should list the limits (Section 3.6.1) for this

implementation and provide a list of status registers that are provided (Section 3.3.7). See Appendix B for a template.

Numerous data structures are described as C-style structures in the Portals API; however, the definition is not meant

to specify a field ordering. The implementation is free to optimize the ordering of data structures.

3.2 Constants

The Portals API defines a number of constants. Constants defined in this specification must be compile time

constants. Further, constants whose type is specified to be integral must be valid labels for switch statements.

35

Constants are generally associated with a base type in which constants are stored. Implementations are given freedom

regarding the numeric values used for constants and their associated base types, constrained only by the compile time

requirements.

3.3 Base Types

The Portals API defines a variety of base types. These types represent a simple renaming of the base types provided

by the C programming language. In most cases these new type names have been introduced to improve type safety

and to avoid issues arising from differences in representation sizes (e.g., 16-bit or 32-bit integers). Table 3.5 on

page 110 lists all the types defined by Portals.

3.3.1 Sizes

The type ptl_size_t is an unsigned 64-bit integral type used for representing sizes. The constant PTL_SIZE_MAX

represents the largest value a ptl_size_t can hold.

3.3.2 Handles

Objects maintained by the API are accessed through handles. Handle types have names of the form

ptl_handle_xx_t, where xx is one of the two letter object type codes shown in Table 3.1, column xx. For example,

the type ptl_handle_ni_t is used for network interface handles. Like all Portals types, their names use lower case

letters and underscores are used to separate words.

Each type of object is given a unique handle type to enhance type checking. The type ptl_handle_any_t can be used

when a generic handle is needed. Every handle value can be converted into a value of type ptl_handle_any_t without

loss of information.

The type of a handle is left unspecified, but must be assignable in C. Every Portals object is associated with a specific

network interface and the network handle associated with an object’s handle may be retrieved by calling

PtlNIHandle().

IMPLEMENTATION

NOTE 4:
Size of handle types

It is highly recommended that a handle type should be no larger than

the native machine word size.

The constant PTL_EQ_NONE, of type ptl_handle_eq_t, is used to indicate the absence of an event queue. Similarly, the

constant PTL_CT_NONE, of type ptl_handle_ct_t, indicates the absence of a counting event. See Section 3.10.1 for uses

of these values. The special constant PTL_INVALID_HANDLE is used to represent an invalid handle.

IMPLEMENTATION

NOTE 5:
Unique handles

The encoding of handles is not specified by the Portals API. An

implementation may reuse handle values, however the implementation

is responsible for handling race conditions between threads calling

release and acquire functions (such as PtlMDRelease() and

PtlMDBind()).

36

3.3.3 Indexes

The type ptl_pt_index_t is an integral type used for representing portal table indexes. See Section 3.6.1 and 3.6.2 for

limits on values of this type.

3.3.4 Match Bits

The type ptl_match_bits_t is capable of holding unsigned 64-bit integer values.

3.3.5 Network Interfaces

The type ptl_interface_t is an integral type used for identifying different network interfaces. Users will need to

consult the implementation’s README documentation to determine appropriate values for the interfaces available.

The special constant PTL_IFACE_DEFAULT identifies the default interface.

3.3.6 Identifiers

The type ptl_nid_t is an integral type used for representing node identifiers and ptl_pid_t is an integral type for

representing process identifiers when physical addressing is used in the network interface (PTL_NI_PHYSICAL is set

for the network interface). If PTL_NI_LOGICAL is set, a rank (ptl_rank_t) is used instead. ptl_uid_t is an integral type

for representing user identifiers.

The special values PTL_PID_ANY matches any process identifier, PTL_NID_ANY matches any node identifier,

PTL_RANK_ANY matches any rank, and PTL_UID_ANY matches any user identifier. See Section 3.11 and 3.12 for uses

of these values.

3.3.7 Status Registers

Each network interface maintains an array of status registers that can be accessed using the PtlNIStatus() function

(Section 3.6.4). The type ptl_sr_index_t defines the type of indexes that can be used to access the status registers. A

small number of indexes are defined for all implementations:

Status Register Indexes (ptl_sr_index_t)

PTL_SR_DROP_COUNT Identifies the status register that counts the dropped requests for the

interface.

PTL_SR_PERMISSION_VIOLATIONS Counts the number of attempted permission violations.

PTL_SR_OPERATION_VIOLATIONS Counts the number of attempted operation violations

A permission violation is a violation of the user id check, while an operation violation is a violation of the allowed

operation types (put and/or get). Note that these three operations are orthogonal such that permission violations and

operations violations should not increment PTL_SR_DROP_COUNT. Other indexes (and registers) may be defined by the

implementation.

The type ptl_sr_value_t defines the type of values held in status registers. This is a signed integer type. The size is

37

implementation dependent but must be at least 32 bits.

3.4 Function Arguments and Return Codes

Unless otherwise noted, an implementation is not required to check the validity of any arguments to a Portals

function call. The argument to many Portals functions is a pointer to a type (because the argument is a pointer to a

structure and/or because the argument is an output parameter). Unless otherwise noted, a pointer must point to a valid

instance of the specified type; NULL is not generally a valid argument.

The Portals API specifies return codes that indicate success or failure of a function call. In the case where the failure

is due to invalid arguments being passed into the function, the exact behavior of an implementation is undefined. The

API suggests error codes that provide more detail about specific invalid parameters, but an implementation is not

required to return these specific error codes. For example, an implementation is free to allow the caller to fault when

given an invalid address, rather than return PTL_ARG_INVALID. In addition, an implementation is free to map these

return codes to standard return codes where appropriate. For example, a Linux kernel-space implementation could

map portals return codes to POSIX-compliant return codes. Table 3.7 on page 113 lists all return codes used by

Portals.

3.5 Initialization and Cleanup

The Portals API includes a function, PtlInit(), to initialize the library and a function, PtlFini(), to clean up after the

process is done using the library. The initialization state of Portals is reference counted so that repeated calls to

PtlInit() and PtlFini() within a process (collection of threads) do not invalidate Portals state until the reference count

reaches zero. Portals is initialized upon successful completion of the first call to PtlInit() and finalized upon

successful completion of the first call to PtlFini() that results in the reference count reaching zero.

A child process does not inherit any Portals resources from its parent. A child process must initialize Portals in order

to obtain new, valid Portals resources. If a child process fails to initialize Portals and then uses the Portals interface,

behavior is undefined for both the parent and the child.

3.5.1 PtlInit

The PtlInit() function initializes the Portals library. PtlInit() must be called at least once by a process before any

thread makes a Portals function call and may be safely called more than once. Each call to PtlInit() increments a

reference count. PtlInit() cannot be called after the Portals library has been finalized.

Function Prototype for PtlInit

int PtlInit(void);

Return Codes

PTL_OK Indicates success.

PTL_FAIL Indicates an error during initialization.

38

3.5.2 PtlFini

The PtlFini() function allows an application to clean up after the Portals library is no longer needed by a process.

Each call to PtlFini() decrements the reference count that was incremented by PtlInit(). When the reference count

reaches zero, all Portals resources are freed. Once the Portals resources are freed, calls to any of the functions defined

by the Portals API or use of the structures set up by the Portals API will result in undefined behavior. Each call to

PtlInit() should be matched by a corresponding PtlFini().

Function Prototype for PtlFini

void PtlFini(void);

3.6 Network Interfaces

The Portals API supports the use of multiple network interfaces. However, each interface is treated as an independent

entity. Combining interfaces (e.g., “bonding” to create a higher bandwidth connection) must be handled internally by

the Portals implementation, embedded in the underlying network, or handled by the application. Interfaces are treated

as independent entities to make it easier to cache information on individual network interface cards.

A Portals physical network interface is a per-process abstraction of a physical network interface (or group of

interfaces). A physical network interface can not be used directly, but can be used by a process to instantiate up to

four logical network interfaces. All logical network interfaces associated with a single physical network interface

share the same network id and process id (nid/pid), but all other resources are unique to a logical network interface. A

logical network interface can be initialized to provide either matching or non-matching Portals addressing and either

logical or physical addressing of network endpoints through the data movement calls. These two options are

independent and all four logical network interface options must be supported by each physical network interface.

Once initialized, each logical interface provides a portal table and a collection of status registers. In order to facilitate

the development of portable Portals applications, a compliant implementation must provide at least 64 portal table

entries. See Section 3.6.4 for a discussion of the PtlNIStatus() function, which can be used to read the value of a

status register. Every other type of Portals object (e.g., memory descriptor, event queue, or list entry) is also

associated with a specific logical network interface. The association to a logical network interface is established

when the object is created, and the PtlNIHandle() function (Section 3.6.5) may be used to determine the logical

network interface with which an object is associated.

Each logical network interface is initialized and shut down independently. The initialization routine, PtlNIInit(),

returns an interface object handle which is used in all subsequent portals operations. The PtlNIFini() function is used

to shut down a logical interface and release any resources that are associated with the interface. Network interface

handles are associated with processes, not threads. All threads in a process share all of the network interface handles.

3.6.1 The Network Interface Limits Type

The function PtlNIInit() accepts a pointer to a structure of desired limits and can fill a structure with the actual values

supported by the network interface. Resource limits are specified independently for each logical network interface.

The two structures are of type ptl_ni_limits_t and include the following members:

39

typedef struct {

int max_entries;

int max_unexpected_headers;

int max_mds;

int max_cts;

int max_eqs;

int max_pt_index;

int max_iovecs;

int max_list_size;

int max_triggered_ops;

ptl_size_t max_msg_size;

ptl_size_t max_atomic_size;

ptl_size_t max_fetch_atomic_size;

ptl_size_t max_waw_ordered_size;

ptl_size_t max_war_ordered_size;

ptl_size_t max_volatile_size;

unsigned int features;

} ptl_ni_limits_t;

Limits

max_entries Maximum number of match list entries or list entries that can be allocated

at any one time (only one of the two exists on an interface).

max_unexpected_headers Maximum number of unexpected headers that the implementation can

buffer.

max_mds Maximum number of memory descriptors that can be allocated at any one

time.

max_eqs Maximum number of event queues that can be allocated at any one time.

max_cts Maximum number of counting events that can be allocated at any one

time.

max_pt_index Largest portal table index for this interface, valid indexes range from 0 to

max_pt_index, inclusive. An interface must support a max_pt_index of at

least 63.

max_iovecs Maximum number of I/O vectors for a single memory descriptor, list

entry, or match list entry for this interface.

max_list_size Maximum number of entries that can be attached to the list on any portal

table index.

max_triggered_ops Maximum number of triggered operations that can be outstanding.

max_msg_size Maximum size (in bytes) of a message (put, get, or reply).

max_atomic_size Maximum size (in bytes) that can be passed to an atomic operation. Any

byte within an operation that is less than max_atomic_size is guaranteed

to only be written to the user memory buffer once.

max_fetch_atomic_size Maximum size (in bytes) that can be passed to an atomic operation that

returns the prior value to the initiator.

max_waw_ordered_size Maximum size (in bytes) of a message that will guarantee “per-address”

data ordering for a write followed by a write (consecutive put or atomic or

a mixture of the two) and a write followed by a read (put followed by a

get) An interface must provide a max_waw_ordered_size of at least 64

bytes.

40

max_war_ordered_size Maximum size (in bytes) of a message that will guarantee “per-address”

data ordering for a read followed by a write (get followed by a put or

atomic). An interface must provide a max_war_ordered_size of at least 8

bytes.

max_volatile_size Maximum size (in bytes) that can be passed as the length of a put or

atomic for a memory descriptor with the PTL_MD_VOLATILE option set.

features A bit mask of features supported by the the Portals implementation.

Currently, three features are defined. PTL_TARGET_BIND_INACCESSIBLE

is discussed in Section 3.11 and 3.12, PTL_TOTAL_DATA_ORDERING is

discussed in Section 2.6, and PTL_COHERENT_ATOMICS is discussed in

Section 3.15.4.

3.6.2 PtlNIInit

The PtlNIInit() function initializes the Portals API for a network interface (NI). A process using Portals must call this

function at least once before any other functions that apply to that interface. An additional call to PtlSetMap() must

be made before communication calls are made on a logically addressed interface (See Section 3.6.6). Calls to

PtlNIInit() increment a reference count on the network interface and must be matched by a call to PtlNIFini(). If

PtlNIInit() gets called more than once per logical interface, then the implementation should fill in actual and

ni_handle with the values obtained by the first caller and should ignore the pid argument. PtlGetId() or

PtlGetPhysId() (Section 3.9) can be used to retrieve the pid.

Discussion: Proper initialization of a logical network interface that uses logical endpoint addressing

requires the user to call PtlSetMap(), creating a mapping of logical ranks to physical node IDs and

process IDs. The physical address (NID/PID) associated with a logical network interface may be

obtained by calling PtlGetPhysId(). The physical address may then be shared through an outside

mechanism (including another Portals logical interface) to establish a consistent mapping of rank to

NID/PID.

Function Prototype for PtlNIInit

int PtlNIInit(ptl_interface_t iface,

unsigned int options,

ptl_pid_t pid,

const ptl_ni_limits_t ∗desired,

ptl_ni_limits_t ∗actual,

ptl_handle_ni_t ∗ni_handle);

Arguments

iface input Identifies the physical network interface to be initialized. (See Section 3.3.5 for a

discussion of values used to identify network interfaces.)

options input This field contains options that are requested for the network interface. Values for this

argument can be constructed using a bitwise OR of the values defined below. Either

PTL_NI_MATCHING or PTL_NI_NO_MATCHING must be set, but not both. Either

PTL_NI_LOGICAL or PTL_NI_PHYSICAL must be set, but not both, to specify the endpoint

addressing mode.

41

pid input Identifies the desired process identifier (for well known process identifiers). The specified

pid must either be non-negative and less than the value PTL_PID_MAX or be PTL_PID_ANY.

The value PTL_PID_ANY may be used to let the Portals library select a process identifier.

See Section 3.9 for more information on process identifiers.

desired input If not NULL, points to a structure that holds the desired limits. If NULL, either previously

set limits or implementation defined defaults will be used.

actual output If not NULL, on successful return, the location pointed to by actual will hold the actual

limits.

ni_handle output On successful return, this location will hold the interface handle.

options

PTL_NI_MATCHING Request that the interface specified in iface be opened with matching

enabled.

PTL_NI_NO_MATCHING Request that the interface specified in iface be opened with matching

disabled. PTL_NI_MATCHING and PTL_NI_NO_MATCHING are mutually

exclusive.

PTL_NI_LOGICAL Request that the interface specified in iface be opened with logical

endpoint addressing (e.g. GASNet node and rank or SHMEM PE).

PTL_NI_PHYSICAL Request that the interface specified in iface be opened with physical

endpoint addressing (e.g. NID/PID). PTL_NI_LOGICAL and

PTL_NI_PHYSICAL are mutually exclusive.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_PID_IN_USE Indicates that pid is currently in use.

PTL_NO_SPACE Indicates that PtlNIInit() was not able to allocate the memory required to initialize the

interface.

Discussion: Each interface has its own sets of limits. In implementations that support multiple

interfaces, the limits passed to and returned by PtlNIInit() apply only to the interface specified in iface.

However, the use of desired is implementation dependent and an implementation may choose to ignore

the request or provide limits based on a previous request.

The desired limits are used to offer a hint to an implementation as to the amount of resources needed, and the

implementation returns the actual limits available for use. In the case where an implementation does not have any

pre-defined limits, it is free to return the largest possible value permitted by the corresponding type (e.g., INT_MAX).

A quality implementation will enforce the limits that are returned and take the appropriate action when limits are

exceeded, such as using the PTL_NO_SPACE return code. The caller is permitted to use maximum values for the

desired fields to indicate that the limit should be determined by the implementation. An implementation must provide

at least the resources specified by actual, unless bounded by another resource such as available application memory

or machine capabilities.

42

3.6.3 PtlNIFini

The PtlNIFini() function is used to release the resources allocated for a network interface. The release of network

interface resources is based on a reference count that is incremented by PtlNIInit() and decremented by PtlNIFini().

Resources can only be released when the reference count reaches zero. Once the release of resources has begun, the

results of pending API operations (e.g., operations initiated by another thread) for this interface are undefined.

Similarly, the effects of incoming operations (put, get, atomic) or return values (acknowledgment and reply) for this

interface are undefined until the interface is reinitialized by another call to PtlNIInit().

Function Prototype for PtlNIFini

int PtlNIFini(ptl_handle_ni_t ni_handle);

Arguments

ni_handle input An interface handle to shut down.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.6.4 PtlNIStatus

The PtlNIStatus() function returns the value of a status register for the specified interface. See Section 3.3.7 for more

information on status register indexes and status register values.

Function Prototype for PtlNIStatus

int PtlNIStatus(ptl_handle_ni_t ni_handle,

ptl_sr_index_t status_register,

ptl_sr_value_t ∗status);

Arguments

ni_handle input An interface handle.

status_register input The index of the status register.

status output On successful return, this location will hold the current value of the status register.

43

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.6.5 PtlNIHandle

The PtlNIHandle() function returns the network interface handle with which the object identified by handle is

associated. If the object identified by handle is a network interface, this function returns the same value it is passed.

Function Prototype for PtlNIHandle

int PtlNIHandle(ptl_handle_any_t handle,

ptl_handle_ni_t ∗ni_handle);

Arguments

handle input The object handle.

ni_handle output On successful return, this location will hold the network interface handle associated with

handle.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.6.6 PtlSetMap

The PtlSetMap() function initializes the mapping from logical endpoint identifiers (rank) to physical endpoint

identifiers (nid/pid) for the given logically addressed logical network interface. A process must ensure that the logical

mapping is set before the specified logically addressed logical network interface may be used in any portals calls

other than PtlNIInit(), PtlGetMap(), and PtlGetPhysId(). If the map of the other logically addressed logical network

interface associated with the same physical network interface as the specified interface handle has not been set by a

call to PtlSetMap(), the implementation may choose to set the mapping on both logical network interfaces. It is

erroneous to call PtlSetMap() on a physically addressed logical network interface. Subsequent calls (either by

different threads or the same thread) to PtlSetMap() will overwrite any mapping associated with the logical network

interface; hence, libraries must take care to ensure reasonable interoperability.

44

Function Prototype for PtlSetMap

int PtlSetMap(ptl_handle_ni_t ni_handle,

ptl_size_t map_size,

const ptl_process_t ∗mapping);

Arguments

ni_handle input The interface handle identifying the network interface which should be initialized with

mapping. The network interface handle must refer to a logically addressed network

interface.

map_size input The number of elements in mapping.

mapping input Points to an array of ptl_process_t structures where entry N in the array contains the

NID/PID pair that is associated with the logical rank N.

Return Codes

PTL_OK Indicates success.

PTL_IGNORED Indicates success, but that the implementation does not support dynamic changing of

the logical identifier map, likely due to integration with a static run-time system.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_SPACE Indicates that PtlSetMap() was not able to allocate the memory required to initialize the

map.

Discussion: PtlSetMap() is a local operation and the map set by different communicating processes

may be different. The rank field of target-side events may be unexpected in cases where the two

processes have different maps.

3.6.7 PtlGetMap

The PtlGetMap() function retrieves the mapping from logical identifiers (rank) to physical identifiers (nid/pid) for the

specified logically addressed logical network interface. If the map_size is smaller than the actual map size, the first

map_size entries in the map will be copied into mapping. If the map_size is larger than the actual map size, the entire

map is copied into mapping and the buffer beyond the actual_map_size entry is left unmodified. It is erroneous to call

PtlGetMap() on a physically addressed logical network interface.

Function Prototype for PtlGetMap

int PtlGetMap(ptl_handle_ni_t ni_handle,

ptl_size_t map_size,

ptl_process_t ∗mapping,

ptl_size_t ∗actual_map_size);

45

Arguments

ni_handle input The network interface handle from which the map should be retrieved. The network

interface handle must refer to a logically addressed logical network interface.

map_size input The length of mapping in number of elements.

mapping output Points to an array of ptl_process_t structures where entry N in the array will be populated

with the NID/PID pair that is associated with the logical rank N.

actual_map_size output On return, actual_map_size contains the size, in number of elements, of the map currently

associated with the logical interface. May be bigger than map_size or the mapping array.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_SPACE Indicates that there was no map set on the logical network interface.

3.7 Portal Table Entries

A portal index refers to a portal table entry. The assignment of these indexes can either be statically or dynamically

managed, and will typically be a combination of both. A portal table entry must be allocated before being used. From

a user perspective, messages that arrive traverse list entries or match list entries in the order they were appended

within a single portal table index. Resource exhaustion (Section 2.7) is handled independently on different portal

table entries.

3.7.1 PtlPTAlloc

The PtlPTAlloc() function allocates a portal table entry and sets flags that pass options to the implementation.

Function Prototype for PtlPTAlloc

int PtlPTAlloc(ptl_handle_ni_t ni_handle,

unsigned int options,

ptl_handle_eq_t eq_handle,

ptl_pt_index_t pt_index_req,

ptl_pt_index_t ∗pt_index);

Arguments

ni_handle input The interface handle to use.

options input This field contains options that are requested for the portal index. Values for this argument

can be constructed using a bitwise OR of the values defined below.

46

eq_handle input The event queue handle used to log the events related to the list entries attached to the

portal table entry. If this argument is PTL_EQ_NONE, events related to this portal table entry

are not logged.

pt_index_req input The value of the portal index that is requested. If the value is set to PTL_PT_ANY, the

implementation can return any portal index.

pt_index output On successful return, this location will hold the portal index that has been allocated.

options

PTL_PT_ONLY_USE_ONCE Hint to the underlying implementation that all entries attached to the

priority list on this portal table entry will have the PTL_ME_USE_ONCE or

PTL_LE_USE_ONCE option set.

PTL_PT_ONLY_TRUNCATE Hint to the underlying implementation that all entries attached to the

priority list on this portal table entry will not have the

PTL_ME_NO_TRUNCATE option set.

PTL_PT_FLOWCTRL Enable flow control on this portal table entry (see Section 2.7).

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_PT_FULL Indicates that there are no free entries in the portal table.

PTL_PT_IN_USE Indicates that the Portal table entry requested is in use.

PTL_PT_EQ_NEEDED Indicates that flow control is enabled and there is no EQ attached.

Discussion: The PTL_PT_ONLY_USE_ONCE and PTL_PT_ONLY_TRUNCATE options are hints to

the implementation that convey that the user will be employing certain common usage scenarios when

using the priority list. Use of these options may allow the implementation to optimize the matching

logic. Note that the optimal set of options may vary depending on whether matching or non-matching

logical network interfaces are used. For a matching logical network interface, an implementation likely

may optimize the case where both PTL_PT_ONLY_USE_ONCE and PTL_PT_ONLY_TRUNCATE are

specified. For a non-matching logical network interface, pre-posted persistent LEs are likely to provide

better performance.

3.7.2 PtlPTFree

The PtlPTFree() function releases the resources associated with a portal table entry. Objects associated with the

portal table entry, such as list entries and event queues, are not freed as the result of a call to PtlPTFree().

Function Prototype for PtlPTFree

int PtlPTFree(ptl_handle_ni_t ni_handle,

ptl_pt_index_t pt_index);

47

Arguments

ni_handle input The interface handle on which the pt_index should be freed.

pt_index input The portal index that is to be freed.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_PT_IN_USE Indicates that pt_index is currently in use (e.g. a match list entry is still attached).

3.7.3 PtlPTDisable

The PtlPTDisable() function indicates to an implementation that no new messages should be accepted on the

specified portal table entry. The function blocks until the portal table entry status has been updated, all messages

being actively processed are completed, and all events are delivered. Since PtlPTDisable() waits until the portal table

entry is disabled before it returns, it does not generate a PTL_EVENT_PT_DISABLED event. Processing of operations

targeting other portal table entries and local operations continues after a call to PtlPTDisable().

Function Prototype for PtlPTDisable

int PtlPTDisable(ptl_handle_ni_t ni_handle,

ptl_pt_index_t pt_index);

Arguments

ni_handle input The interface handle to use.

pt_index input The portal index that is to be disabled.

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

3.7.4 PtlPTEnable

The PtlPTEnable() function indicates to an implementation that a previously disabled portal table entry should be

re-enabled. This is used to enable portal table entries that were automatically or manually disabled. The function

48

blocks until the portal table entry is enabled.

Function Prototype for PtlPTEnable

int PtlPTEnable(ptl_handle_ni_t ni_handle,

ptl_pt_index_t pt_index);

Arguments

ni_handle input The interface handle to use.

pt_index input The value of the portal index to enable.

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

Discussion: PtlPTEnable() re-enables a portal table entry, allowing incoming messages to match

against list entries associated with the portal table entry. Messages may have been dropped while the

portal table entry was disabled. Higher level communication protocols with strict ordering constraints

may have to quiesce messages and retransmit after re-enabling a portal table entry (See Section 2.7).

3.8 User Identification

Every process runs on behalf of a user. User identifiers are included in the trusted portion of the header of a portals

message. They can be used at the target to limit access to list entries (Section 3.11 and Section 3.12). The uid is

common across logical network interfaces within the same process, even if the logical network interfaces are over

different physical network interfaces.

3.8.1 PtlGetUid

The PtlGetUid() function is used to retrieve the user identifier of a process.

Function Prototype for PtlGetUid

int PtlGetUid(ptl_handle_ni_t ni_handle,

ptl_uid_t ∗uid);

Arguments

ni_handle input A network interface handle.

49

uid output On successful return, this location will hold the user identifier for the calling process.

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

3.9 Process Identification

Processes that use the Portals API can be identified using a node identifier and process identifier. Every node

accessible through a network interface has a unique node identifier and every process running on a node has a unique

process identifier. As such, any process in the computing system can be uniquely identified by its node identifier and

process identifier. The node identifier and process identifier can be aggregated by the application into a rank, which is

translated by the implementation into a network identifier and process identifier. It is an implementation decision

whether two physical network interfaces in the same node have the same node or process identifiers. All logical

network interfaces which share the same physical network interface share the same node and process identifiers.

The Portals API defines a type, ptl_process_t, for representing process identifiers, and two functions, PtlGetId() and

PtlGetPhysId(), which can be used to obtain the identifier of the current process.

Discussion: The Portals API does not include thread identifiers. Messages are delivered to processes

(address spaces) not threads (contexts of execution).

3.9.1 The Process Identification Type

The ptl_process_t type is a union that can represent the process as either a physical address or a logical address within

the machine. The physical address uses two identifiers to represent a process identifier: a node identifier nid and a

process identifier pid. In turn, a logical address uses a logical index within a translation table specified by the

application (the rank) to identify another process.

typedef union {

struct {

ptl_nid_t nid;

ptl_pid_t pid;

} phys;

ptl_rank_t rank;

} ptl_process_t;

50

3.9.2 PtlGetId

Function Prototype for PtlGetId

int PtlGetId(ptl_handle_ni_t ni_handle,

ptl_process_t ∗id);

Arguments

ni_handle input A network interface handle.

id output On successful return, this location will hold the identifier for the calling process. If the

interface is logically addressed, the logical address is returned. If the interface is physically

addressed, the physical address is returned.

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

Discussion: Note that process identifiers and ranks are dependent on the network interface(s). In

particular, if a node has multiple interfaces, it may have multiple process identifiers and multiple ranks.

3.9.3 PtlGetPhysId

Function Prototype for PtlGetPhysId

int PtlGetPhysId(ptl_handle_ni_t ni_handle,

ptl_process_t ∗id);

Arguments

ni_handle input A network interface handle.

id output On successful return, this location will hold the identifier for the calling process. The

physical address is always returned, even for logically addressed network interfaces.

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

51

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

Discussion: Note that process identifiers and ranks are dependent on the network interface(s). In

particular, if a node has multiple interfaces, it may have multiple process identifiers and multiple ranks.

3.10 Memory Descriptors

A memory descriptor contains information about a region of a process’ memory and optionally points to an event

queue and counting event where information about the operations performed on the memory descriptor are recorded.

Memory descriptors are initiator side resources that are used to encapsulate the association of a network interface

(NI) with a description of a memory region. They provide an interface to register memory (for operating systems that

require it) and to carry that information across multiple operations (an MD is persistent until released). PtlMDBind()

is used to create a memory descriptor and PtlMDRelease() is used to unlink and release the resources associated with

a memory descriptor.

A memory descriptor describes a memory region using a base address and length; however, it is not a requirement for

all of the memory described by the memory descriptor to be allocated or accessible within the application. For

example, an application can create a memory descriptor that covers the entire virtual address range by setting start to

NULL and length to PTL_SIZE_MAX, even though the entire region is not currently allocated. If the application issues

a portals operation (e.g. put) that would access an unallocated region of the MD, the implementation may either

cause a segmentation fault of the application or may simply fail the operation. If a full event is delivered, it must set

ni_fail_type to PTL_NI_SEGV. If the memory descriptor sets the PTL_IOVEC option, the memory region(s) described

by the ptl_iovec_t must all be accessible within the application.

IMPLEMENTATION

NOTE 6:
Memory descriptors that bind inaccessible memory

The implementation is responsible for handling any issues, such as the

memory registration required by some platforms, that arise from the

ability of an MD to cover all of the virtual address space. While some

implementations may have elegant solutions to this issue (e.g.

lightweight kernels or NIC hardware translation caching), other

implementations may require registration caching schemes.

3.10.1 The Memory Descriptor Type

The ptl_md_t type defines the visible parts of a memory descriptor. Values of this type are used to initialize the

memory descriptors.

typedef struct {

void ∗start;

ptl_size_t length;

unsigned int options;

ptl_handle_eq_t eq_handle;

ptl_handle_ct_t ct_handle;

} ptl_md_t;

52

Members

start, length Specify the memory region associated with the memory descriptor. The

start member specifies the starting address for the memory region and the

length member specifies the length of the region. There are no restrictions

on buffer alignment, the starting address or the length of the region;

although messages that are not natively aligned (e.g. to a four byte or

eight byte boundary) may be slower (i.e., lower bandwidth and/or longer

latency) on some implementations.

options Specifies the behavior of the memory descriptor. Options include the use

of scatter/gather vectors and control of events associated with this

memory descriptor. Values for this argument can be constructed using a

bitwise OR of the following values:

PTL_MD_EVENT_SEND_DISABLE Specifies that this memory descriptor should not generate send events

(PTL_EVENT_SEND). This flag does not affect counting events.

PTL_MD_EVENT_SUCCESS_DISABLE Specifies that this memory descriptor should not generate full events if

the ni_fail_type would be PTL_OK. This flag does not affect counting

events. Disabling full events for successful operations is useful in

scenarios when a counting event is sufficient for completion, but more

information is needed for error recovery.

PTL_MD_EVENT_CT_SEND Enable the counting of PTL_EVENT_SEND events.

PTL_MD_EVENT_CT_REPLY Enable the counting of PTL_EVENT_REPLY events.

PTL_MD_EVENT_CT_ACK Enable the counting of PTL_EVENT_ACK events.

PTL_MD_EVENT_CT_BYTES By default, counting events count events. When set, this option causes

bytes to be counted instead for success events. Byte counts must be

incremented exactly once per operation. The increment is by the mlength

that would be specified by the associated full event. Failure events always

increment the count by one.

PTL_MD_UNORDERED Indicate to the Portals implementation that messages sent from this

memory descriptor do not have to arrive at the target in order. Note that

this has no impact on acknowledgments or replies, which are never

required to be ordered.

PTL_MD_VOLATILE Indicate to the Portals implementation that the application may modify

any send buffers associated with this memory descriptor immediately

following the return from a portals operation. Operations should not

return until it is safe for the application to reuse any send buffers. The

Portals implementation is not required to honor this option unless the size

of the operation is less than or equal to max_volatile_size. Note that the

MD can be of any size, but the Portals implementation must honor this

option as long as the operation (e.g. put) uses a length less than or equal

to max_volatile_size. If the application sets PTL_MD_VOLATILE and

violates the max_volatile_size, the operation may fail.

PTL_IOVEC Specifies that the start argument is a pointer to an array of type

ptl_iovec_t (Section 3.10.2) and the length argument is the length of the

array of ptl_iovec_t elements. This allows for a scatter/gather capability

for memory descriptors. A scatter/gather memory descriptor behaves

exactly as a memory descriptor that describes a single virtually

contiguous region of memory. The array of ptl_iovec_t elements referred

to by the start argument cannot be changed or released for the lifetime

of the memory descriptor.

53

eq_handle The event queue handle used to log the operations performed on the

memory region. If this argument is PTL_EQ_NONE, operations performed

on this memory descriptor are not logged.

ct_handle A handle for counting events associated with the memory region. If this

argument is PTL_CT_NONE, operations performed on this memory

descriptor are not counted.

3.10.2 The I/O Vector Type

The ptl_iovec_t type is used to describe scatter/gather buffers of a memory descriptor, list entry, or match list entry in

conjunction with the PTL_IOVEC option. The ptl_iovec_t type is intended to be a type definition of the struct iovec

type on systems that already support this type.

The ptl_iovec_t array is passed as the start field when creating a memory descriptor, list entry, or match list entry must

not be modified or destroyed by the application or implementation for the life of the descriptor or entry. Descriptors

or entries using ptl_iovec_t types may be mixed with offsets (local and remote). The offset is computed as if the

region described by the ptl_iovec_t type were a single contiguous region.

Discussion: Performance conscious users should not mix offsets (local or remote) with ptl_iovec_t .

While this is a supported operation, it may have unexpected performance consequences.

typedef struct {

void ∗iov_base;

ptl_size_t iov_len;

} ptl_iovec_t;

Members

iov_base The byte aligned start address of the vector element

iov_len The length (in bytes) of the vector element

3.10.3 PtlMDBind

The PtlMDBind() operation is used to create a memory descriptor to be used by the initiator . On systems that require

memory registration, the PtlMDBind() operation should invoke the appropriate memory registration functions.

Function Prototype for PtlMDBind

int PtlMDBind(ptl_handle_ni_t ni_handle,

const ptl_md_t ∗md,

ptl_handle_md_t ∗md_handle);

54

Arguments

ni_handle input The network interface handle with which the memory descriptor will be associated.

md input Provides initial values for the user-visible parts of a memory descriptor. Other than its use

for initialization, there is no linkage between this structure and the memory descriptor

maintained by the implementation.

md_handle output On successful return, this location will hold the newly created memory descriptor handle.

The md_handle argument must be a valid address and cannot be NULL.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. Argument checking is implementation

dependent, but this may indicate that an invalid ni_handle was used, an invalid event

queue was associated with the md, or other contents in the md were illegal.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the memory descriptor.

IMPLEMENTATION

NOTE 7:
Optimization for Duplicate Memory Descriptors

Because the eq_handle and ct_handle are bound to the memory

descriptor on the initiator, there are usage models where it is

necessary to create numerous memory descriptors that only differ in

their eq_handle or ct_handle field. Implementations may desire to

optimize for this usage model.

3.10.4 PtlMDRelease

The PtlMDRelease() function releases the internal resources associated with a memory descriptor. (This function

does not free the memory region associated with the memory descriptor; i.e., the memory the user allocated for this

memory descriptor.) Only memory descriptors with no pending operations may be unlinked. A memory descriptor is

considered to have pending operations if an operation has been started and the corresponding PTL_EVENT_SEND or

PTL_EVENT_REPLY operation has not been delivered. A memory descriptor may be released before a PTL_EVENT_ACK

event is delivered, in which case the acknowledgment will be discarded.

Function Prototype for PtlMDRelease

int PtlMDRelease(ptl_handle_md_t md_handle);

Arguments

md_handle input The memory descriptor handle to be released.

55

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.11 List Entries and Lists

A list is a chain of list entries. Examples of lists include the priority list and the overflow list. Each list entry (LE)

describes a memory region and includes a set of options. It is the target side analogue of the memory descriptor (MD)

for non-matching logical network interfaces. The PtlLEAppend() function appends a single list entry to the specified

list on the specified portal index and returns the list entry handle. List entries can be dynamically removed from a list

using the PtlLEUnlink() function.

Like a memory descriptor, a list entry describes a memory region using a base address and length. A zero-length list

entry may be created by setting start to NULL and length to 0. Zero-length buffers (NULL LE) are useful to record

events. Messages that are outside the bounds of the LE are truncated to zero bytes (e.g. zero-length buffers or an

offset beyond the length of the LE). If the interface set the PTL_TARGET_BIND_INACCESSIBLE bit in the features field

of the actual limits (See Section 3.6.1), then it is not a requirement for all of the memory described by the list entry to

be allocated or accessible within the application. For example, an application could create a list entry that covers the

entire virtual address range by setting start to NULL and length to PTL_SIZE_MAX, even though the entire region is

not currently allocated. If an incoming operation (e.g. put) attempts to access an unallocated region of the LE, the

implementation may either cause a segmentation fault of the application or may simply fail the operation. If a full

event is delivered, it must set ni_fail_type to PTL_NI_SEGV. The target may, however, set the

PTL_LE_IS_ACCESSIBLE option to indicate that the entire memory space described by the LE is accessible. If the list

entry sets the PTL_IOVEC option, the memory region(s) described by the ptl_iovec_t must all be accessible within the

application.

IMPLEMENTATION

NOTE 8:
List entries that bind inaccessible memory

If the implementation returns PTL_TARGET_BIND_INACCESSIBLE, then

the implementation is responsible for handling any issues, such as the

memory registration required by some platforms, that arise from the

ability of an LE to cover all of the virtual address space. While some

implementations may have elegant solutions to this issue (e.g.

lightweight kernels or NIC hardware translation caching), other

implementations may require a software thread on the target to

implement a remote registration caching scheme like Firehose [3].

List entries can be appended to either the priority list or the overflow list associated with a portal table entry;

however, when attached to an overflow list, additional semantics are implied that require the implementation to track

messages that arrive in list entries. Essentially, the memory region identified is provided to the implementation for

use in managing unexpected messages. Buffers provided in the overflow list will post a full event

(PTL_EVENT_AUTO_UNLINK) when the buffer space has been consumed, to notify the application that more buffer

space may be needed. When the application is free to reuse the buffer (i.e. the implementation is done with it),

another full event (PTL_EVENT_AUTO_FREE) will be posted. The PTL_EVENT_AUTO_FREE full event will be posted

after all other events associated with the buffer have been delivered.

Discussion: It is the responsibility of the application to ensure that the implementation has sufficient

56

buffer space to manage unexpected messages (i.e. in the unexpected list). Failure to do so will cause

messages to be dropped. The PTL_EVENT_ACK at the initiator will indicate the failure as described in

Section 3.13.3. Note that overflow events can readily exhaust the event queue. Proper use of the API will

generally require the application to post at least two (and typically several) buffers so that the application

has time to notice the PTL_EVENT_AUTO_UNLINK and replace the buffer. In many usage scenarios,

however, the application may choose to have only persistent list entries—list entries without the

PTL_LE_USE_ONCE option set—in the priority list. Thus, overflow list entries will not be required.

It is the responsibility of the implementation to determine when a buffer that is automatically unlinked

from an overflow list can be reused. It must note that it is no longer holding state associated with the

buffer and post a PTL_EVENT_AUTO_FREE full event after all other events associated with that buffer

have been delivered.

List entries can be appended to a network interface with the PTL_NI_NO_MATCHING option set (a non-matching

network interface). A matching network interface requires a match list entry.

3.11.1 The List Entry Type

The ptl_le_t type defines the visible parts of a list entry. Values of this type are used to initialize the list entries.

typedef struct {

void ∗start;

ptl_size_t length;

ptl_handle_ct_t ct_handle;

ptl_uid_t uid;

unsigned int options;

} ptl_le_t;

Members

start, length Specify the memory region associated with the list entry. The start

member specifies the starting address for the memory region and the

length member specifies the length of the region. There are no restrictions

on buffer alignment, the starting address or the length of the region;

although messages that are not natively aligned (e.g. to a four byte or

eight byte boundary) may be slower (i.e., lower bandwidth and/or longer

latency) on some implementations.

ct_handle A handle for counting events associated with the memory region. If this

argument is PTL_CT_NONE, operations performed on this list entry are not

counted.

uid Specifies the user ID that may access this list entry. The user ID may be

set to a wildcard (PTL_UID_ANY). If the access control check fails, then

the message is dropped without modifying Portals state. This is treated as

a permissions failure and the status register indexed by

PTL_SR_PERMISSION_VIOLATIONS is incremented. This failure is also

indicated to the initiator. If a full event is delivered to the initiator, the

ni_fail_type in the PTL_EVENT_ACK event must be set to

PTL_NI_PERM_VIOLATION.

57

options Specifies the behavior of the list entry. The following options can be

selected: enable put operations (yes or no), enable get operations (yes or

no), offset management (local or remote), message truncation (yes or no),

acknowledgment (yes or no), use scatter/gather vectors and control event

delivery. Values for this argument can be constructed using a bitwise OR

of the following values:

PTL_LE_OP_PUT Specifies that the list entry will respond to put operations. By default, list

entries reject put operations. If a put operation targets a list entry where

PTL_LE_OP_PUT is not set, it is treated as an operations failure and

PTL_SR_OPERATION_VIOLATIONS is incremented. If a full event is

delivered to the initiator, the ni_fail_type in the PTL_EVENT_ACK event

must be set to PTL_NI_OP_VIOLATION.

PTL_LE_OP_GET Specifies that the list entry will respond to get operations. By default, list

entries reject get operations. If a get operation targets a list entry where

PTL_LE_OP_GET is not set, it is treated as an operations failure and

PTL_SR_OPERATION_VIOLATIONS is incremented. If a full event is

delivered to the initiator, the ni_fail_type in the PTL_EVENT_ACK event

must be set to PTL_NI_OP_VIOLATION.

Note: It is not considered an error to have a list entry that does not

respond to either put or get operations: Nor is it considered an error to

have a list entry that responds to both put and get operations. In fact, a list

entry must be configured to respond to both put and get operations to

properly handle a PtlFetchAtomic() or PtlSwap() operation.

PTL_LE_USE_ONCE Specifies that the list entry will only be used once and then unlinked. If

this option is not set, the list entry persists until it is explicitly unlinked.

PTL_LE_ACK_DISABLE Specifies that an acknowledgment should not be sent for incoming put

operations, even if requested. By default, acknowledgments are sent for

put operations that request an acknowledgment. See Section 3.13.3 for

exceptions to this rule. This applies to both full and counting events.

Acknowledgments are never sent for get operations. The data sent in the

reply serves as an implicit acknowledgment.

PTL_LE_UNEXPECTED_HDR_DISABLE Specifies that the header for a message delivered to this list entry should

not be added to the unexpected list. This option only has meaning if the

list entry is inserted into the overflow list. By creating a list entry which

truncates messages to zero bytes, disables comm events, and sets this

option, a user may create a list entry which consumes no target side

resources.

PTL_IOVEC Specifies that the start argument is a pointer to an array of type

ptl_iovec_t (Section 3.10.2) and the length argument is the length of the

array. This allows for a scatter/gather capability for list entries. A

scatter/gather list entry behaves exactly as a list entry that describes a

single virtually contiguous region of memory. All other semantics are

identical. The array of ptl_iovec_t elements referred to by the start

argument cannot be changed or released until the list entry is unlinked.

PTL_LE_IS_ACCESSIBLE Indicate that this list entry only contains memory addresses that are

accessible by the application.

PTL_LE_EVENT_LINK_DISABLE Specifies that this list entry should not generate a PTL_EVENT_LINK full

event indicating the list entry successfully linked.

PTL_LE_EVENT_COMM_DISABLE Specifies that this list entry should not generate full events that indicate a

communication operation. This includes PTL_EVENT_GET,

PTL_EVENT_PUT, PTL_EVENT_ATOMIC, and PTL_EVENT_SEARCH.

58

PTL_LE_EVENT_FLOWCTRL_DISABLE Specifies that this list entry should not generate a

PTL_EVENT_PT_DISABLED full event indicating a flow control failure

when the current list entry generated the failure.

PTL_LE_EVENT_SUCCESS_DISABLE Specifies that this list entry should not generate full events if the

ni_fail_type would be PTL_OK. This flag does not affect counting events.

Disabling full events for successful operations is useful in scenarios when

a counting event is sufficient for completion, but more information is

needed for error recovery.

PTL_LE_EVENT_OVER_DISABLE Specifies that this list entry should not generate overflow list full events.

This includes PTL_EVENT_PUT_OVERFLOW, PTL_EVENT_GET_OVERFLOW,

PTL_EVENT_ATOMIC_OVERFLOW, and

PTL_EVENT_FETCH_ATOMIC_OVERFLOW.

PTL_LE_EVENT_UNLINK_DISABLE Specifies that this list entry should not generate auto-unlink

(PTL_EVENT_AUTO_UNLINK) or free (PTL_EVENT_AUTO_FREE) full events.

PTL_LE_EVENT_CT_COMM Enable the counting of communication full events (PTL_EVENT_PUT,

PTL_EVENT_GET, PTL_EVENT_ATOMIC).

PTL_LE_EVENT_CT_OVERFLOW Enable the counting of overflow events (PTL_EVENT_PUT_OVERFLOW,

PTL_EVENT_GET_OVERFLOW, PTL_EVENT_ATOMIC_OVERFLOW,

PTL_EVENT_FETCH_ATOMIC_OVERFLOW).

PTL_LE_EVENT_CT_BYTES By default, counting events count events. When set, this option causes

bytes to be counted instead for success events. Byte counts must be

incremented exactly once per operation. The increment is by the number

of bytes counted (mlength). Failure events always increment the count by

one.

Discussion: When the PTL_LE_USE_ONCE option is set, an event associated with a target side

operation (e.g. a PTL_EVENT_PUT full event) also implies that the associated list entry has unlinked;

hence, it is safe on these list entries to set the PTL_LE_EVENT_UNLINK_DISABLE option.

PTL_LE_EVENT_FLOWCTRL_DISABLE only disables flow control events which are the direct result

of an incoming message matching the current list entry. This includes a message matching the list entry

but the associated event queue is full or a message matching a list entry in the overflow list but the

unexpected headers list is full. If flow control is enabled on the portal table entry and a message does not

match in either the priority or overflow lists, a PTL_EVENT_PT_DISABLED event is always generated.

3.11.2 PtlLEAppend

The PtlLEAppend() function creates a single list entry and appends this entry to the end of the list specified by

ptl_list associated with the portal table entry specified by pt_index for the portal table for ni_handle.

When a list entry is posted to a priority list, the unexpected list is checked to see if a message has arrived prior to

posting the list entry. If so, an appropriate overflow full event is generated, the matching header is removed from the

unexpected list, and a list entry with the PTL_LE_USE_ONCE option is not inserted into the priority list. If a persistent

list entry is posted to the priority list, it may cause multiple overflow events to be generated, one for every matching

entry in the unexpected list. No permissions check is performed on a matching message in the unexpected list. No

searching of the unexpected list is performed when a list entry is posted to the overflow list. When the list entry has

been linked (inserted) into the specified list, a PTL_EVENT_LINK event is generated.

Discussion: Generally speaking, the user should attempt to insure that persistent list entries (or match

list entries) are inserted before messages arrive that match them. Inserts of persistent entries could have

59

unexpected performance and resource usage characteristics if a large unexpected list has accumulated,

since a PtlLEAppend() that appends a persistent LE can cause multiple matches.

List Entry Type Constants (ptl_list_t)

PTL_PRIORITY_LIST The priority list associated with a portal table entry

PTL_OVERFLOW_LIST The overflow list associated with a portal table entry

Function Prototype for PtlLEAppend

int PtlLEAppend(ptl_handle_ni_t ni_handle,

ptl_pt_index_t pt_index,

const ptl_le_t ∗le,

ptl_list_t ptl_list,

void ∗user_ptr,

ptl_handle_le_t ∗le_handle);

Arguments

ni_handle input The interface handle to use.

pt_index input The portal table index where the list entry should be appended.

le input Provides initial values for the user-visible parts of a list entry. Other than its use for

initialization, there is no linkage between this structure and the list entry maintained by the

API.

ptl_list input Determines whether the list entry is appended to the priority list or the overflow list.

user_ptr input A user-specified value that is associated with each command that can generate an event.

The value does not need to be a pointer, but must fit in the space used by a pointer. This

value (along with other values) is recorded in full events associated with operations on this

list entry.

le_handle output On successful return, this location will hold the newly created list entry handle.

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the match list entry.

PTL_LIST_TOO_LONG Indicates that the resulting list is too long. The maximum length for a list is defined by

the interface.

Discussion: Tying commands to a user-defined value is useful at the target when the command needs to

be associated with a data structure maintained by the process outside of the portals library. For example,

60

an MPI implementation can set the user_ptr argument to the value of an MPI Request. This direct

association allows for processing of list entries by the MPI implementation without a table look up or a

search for the appropriate MPI Request.

3.11.3 PtlLEUnlink

The PtlLEUnlink() function can be used to unlink a list entry from a list. If PtlLEUnlink() returned PTL_OK, it is an

error to use the list entry handle after the call to PtlLEUnlink(). PtlLEUnlink() will return PTL_IN_USE if the list

entry is on the overflow list and has associated unexpected headers.

PtlLEUnlink() is frequently used to implement the cancel of receive operations in higher level protocols. If the list

entry handle passed to PtlLEUnlink() has pending operations, e.g., an unfinished put operation or the list entry is in

the overflow list and there are unexpected headers associated with the list entry, then PtlLEUnlink() will return

PTL_IN_USE, and the list entry will not be unlinked. An implementation must ensure that list entry handles remain

valid for calls to PtlLEUnlink() until the next call to PtlLEAppend() after the last event associated with the list entry

is delivered to an event queue or counting event. If the list entry has been unlinked before a call to PtlLEUnlink() but

before the next call to PtlLEAppend(), PtlLEUnlink() must return PTL_IN_USE.

IMPLEMENTATION

NOTE 9:
PtlLEUnlink() and unlinked handles

PtlLEUnlink() may be used to unlink list entries which are use-once.

In this case, there is a race condition between a network operation

causing a list entry to unlink and the list entry being explicitly unlinked.

Requiring the handle to remain valid until the next call to

PtlLEAppend() allows higher level protocols to implement the

serialization necessary to prevent such race conditions from impacting

correctness. A Portals implementation does not need to limit the

lifespan of handles to that specified. For example, a generation counter

embedded in the handle may allow the handle to remain valid for the

purposes of PtlLEUnlink() for significantly longer than specified.

Function Prototype for PtlLEUnlink

int PtlLEUnlink(ptl_handle_le_t le_handle);

Arguments

le_handle input The list entry handle to be unlinked.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_IN_USE Indicates that the list entry has pending operations and cannot be unlinked.

61

3.11.4 PtlLESearch

The PtlLESearch() function is used to search for a message in the unexpected list associated with a specific portal

table entry specified by pt_index for the portal table for ni_handle. PtlLESearch() uses the exact same search of the

unexpected list as PtlLEAppend(); however, the list entry specified in the PtlLESearch() call is never linked into a

priority list.

The PtlLESearch() function can be called in two modes. If ptl_search_op is set to PTL_SEARCH_ONLY, the

unexpected list is searched, but matching entries are left in the list. If ptl_search_op is set to PTL_SEARCH_DELETE,

the unexpected list is searched and any matching items are deleted. When used with PTL_SEARCH_ONLY, a

PTL_EVENT_SEARCH event with ni_fail_type PTL_NI_OK is generated when a matching message is found in the

unexpected list. When used with PTL_SEARCH_DELETE, the event that is generated corresponds to the type of

operation that is found (e.g. PTL_EVENT_PUT_OVERFLOW, PTL_EVENT_GET_OVERFLOW,

PTL_EVENT_ATOMIC_OVERFLOW, or PTL_EVENT_FETCH_ATOMIC_OVERFLOW). In either case, if no matching message

is found, a PTL_EVENT_SEARCH event is generated with a failure indication of PTL_NI_NO_MATCH. If the list entry

specified in the PtlLESearch() call is persistent, an event is generated for every match in the unexpected list. No

permissions check is performed during search; only matching criteria are used to determine if an event should be

generated. Users should use the generated event data to perform any required permissions check.

Event generation for the search functions works just as it would for an append function. If a search is performed with

full events disabled (either through option or through the absence of an event queue on the portal table entry), the

search will succeed, but no full events will be generated. Status registers, however, are handled slightly differently for

a search in that a PtlLESearch() never causes a status register to be incremented.

Discussion: Searches with persistent entries could have unexpected performance and resource usage

characteristics if a large overflow list has accumulated, since a PtlLESearch() that uses a persistent LE

can cause multiple matches.

List Entry Search Operation Constants (ptl_search_op_t)

PTL_SEARCH_ONLY Use the LE/ME to search the overflow list, without consuming an item in

the list.

PTL_SEARCH_DELETE Use the LE/ME to search the overflow list and delete the item from the

list.

Function Prototype for PtlLESearch

int PtlLESearch(ptl_handle_ni_t ni_handle,

ptl_pt_index_t pt_index,

const ptl_le_t ∗le,

ptl_search_op_t ptl_search_op,

void ∗user_ptr);

Arguments

ni_handle input The interface handle to use.

pt_index input The portal table index that should be searched.

62

le input Provides values for the user-visible parts of a list entry to use for searching.

ptl_search_op input Determines whether the function only searches the list or searches the list and deletes the

matching entries from the list.

user_ptr input A user-specified value that is associated with each command that can generate an event.

The value does not need to be a pointer, but must fit in the space used by a pointer. This

value (along with other values) is recorded in full events associated with operations on this

list entry.

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

Discussion: Tying commands to a user-defined value is useful at the target when the command needs to

be associated with a data structure maintained by the process outside of the portals library. For example,

an MPI implementation can set the user_ptr argument to the value of an MPI Request. This direct

association allows for processing of match list entries by the MPI implementation without a table look up

or a search for the appropriate MPI Request.

3.12 Match List Entries and Matching Lists

Matching list entries add matching semantics to the basic list constructs. Each match list entry (ME) adds a set of

match criteria to the basic memory region description in the list entry. The match criteria added can be used to reject

incoming requests based on process identifier or the match bits provided in the request. The PtlMEAppend() function

appends a single match list entry to the specified portal index and returns the match list entry handle. Matching list

entries can be dynamically removed from a list using the PtlMEUnlink() function.

Like a list entry, a match list entry describes a memory region using a base address and length. A zero-length list

entry may be created by setting start to NULL and length to 0. Zero-length buffers (NULL ME) are useful to record

events. If truncation is not disabled, messages that are outside the bounds of the ME are truncated to zero bytes (e.g.

zero-length buffers or an offset beyond the length of the ME). If the interface set the

PTL_TARGET_BIND_INACCESSIBLE bit in the features field of the actual limits (See Section 3.6.1), then it is not a

requirement for all of the memory described by the match list entry to be allocated or accessible within the

application. For example, an application could create a match list entry that covers the entire virtual address range by

setting start to NULL and length to PTL_SIZE_MAX, even though the entire region is not currently allocated (See

Implementation Note 8. If an incoming operation (e.g. put) attempts to access an unallocated region of the ME, the

implementation may either cause a segmentation fault of the application or may simply fail the operation. If a full

event is delivered, it must set ni_fail_type to PTL_NI_SEGV. The target may, however, set the

PTL_LE_IS_ACCESSIBLE option to indicate that the entire memory space described by the ME is accessible. If the

match list entry sets the PTL_IOVEC option, the memory region(s) described by the ptl_iovec_t must all be accessible

within the application.

Matching list entries can be appended to either the priority list or the overflow list associated with a portal table entry;

however, when attached to an overflow list, additional semantics are implied that require the implementation to track

messages that arrive in match list entries. Essentially, the memory region identified is provided to the implementation

for use in managing unexpected messages; however, the application may use the match bits and other matching

criteria to further constrain how these buffers are used. Buffers provided in the overflow list will post a full event

63

(PTL_EVENT_AUTO_UNLINK) when the buffer space has been consumed, to notify the application that more buffer

space may be needed. When the application is free to reuse the buffer (i.e. the implementation is done with it),

another full event (PTL_EVENT_AUTO_FREE) will be posted. The PTL_EVENT_AUTO_FREE full event will be posted

after all other events associated with the buffer have been posted to the event queue.

Incoming match bits are compared to the match bits stored in the match list entry using the ignore bits as a mask. An

optimized version of this is shown in the following code fragment:

((incoming_bits ^ match_bits) & ~ignore_bits) == 0

Discussion: It is the responsibility of the application to ensure that the implementation has sufficient

buffer space to manage unexpected messages. Failure to do will cause messages to be dropped. The

PTL_EVENT_ACK at the initiator will indicate the failure as described in Section 3.13.3. Note that

overflow events can readily exhaust the event queue. Proper use of the API will generally require the

application to post at least two (and typically several) buffers so that the application has time to notice

the PTL_EVENT_AUTO_UNLINK and replace the buffer.

It is the responsibility of the implementation to determine when a buffer unlinked from an overflow list

can be reused. It must note that it is no longer holding state associated with the buffer and deliver a

PTL_EVENT_AUTO_FREE full event after all other events associated with that buffer have been

delivered.

Match list entries may only be appended to a matching network interface. The interpretation of the match_id field in

a match list entry is determined by whether the network interface is physically or logically addressed.

3.12.1 The Match List Entry Type

The ptl_me_t type defines the visible parts of a match list entry. Values of this type are used to initialize and update

the match list entries.

typedef struct {

void ∗start;

ptl_size_t length;

ptl_handle_ct_t ct_handle;

ptl_uid_t uid;

unsigned int options;

ptl_process_t match_id;

ptl_match_bits_t match_bits;

ptl_match_bits_t ignore_bits;

ptl_size_t min_free;

} ptl_me_t;

64

Members

start, length Specify the memory region associated with the match list entry. The start

member specifies the starting address for the memory region and the

length member specifies the length of the region. There are no restrictions

on buffer alignment, the starting address or the length of the region;

although messages that are not natively aligned (e.g. to a four byte or

eight byte boundary) may be slower (i.e., lower bandwidth and/or longer

latency) on some implementations.

ct_handle A handle for counting events associated with the memory region. If this

argument is PTL_CT_NONE, operations performed on this match list entry

are not counted.

min_free When the unused portion of a match list entry (length - local offset) falls

below this value, the match list entry automatically unlinks . A min_free

value of 0 disables the min_free capability (the free space cannot fall

below 0). This value is only used if PTL_ME_MANAGE_LOCAL is set.

uid Specifies the user ID that may access this match list entry. The user ID

may be set to a wildcard (PTL_UID_ANY). If the access control check fails,

then the message is dropped without modifying Portals state. This is

treated as a permissions failure and the status register indexed by

PTL_SR_PERMISSION_VIOLATIONS is incremented. This failure is also

indicated to the initiator. If a full event is delivered to the initiator, the

ni_fail_type in the PTL_EVENT_ACK full event must be set to

PTL_NI_PERM_VIOLATION.

options Specifies the behavior of the match list entry. The following options can

be selected: enable put operations (yes or no), enable get operations (yes

or no), offset management (local or remote), message truncation (yes or

no), acknowledgment (yes or no), use scatter/gather vectors and control

event delivery. Values for this argument can be constructed using a

bitwise OR of the following values:

PTL_ME_OP_PUT Specifies that the match list entry will respond to put operations. By

default, match list entries reject put operations. If a put operation targets a

list entry where PTL_ME_OP_PUT is not set, it is treated as an operations

failure and PTL_SR_OPERATION_VIOLATIONS is incremented. If a full

event is delivered to the initiator, the ni_fail_type in the PTL_EVENT_ACK

event must be set to PTL_NI_OP_VIOLATION.

PTL_ME_OP_GET Specifies that the match list entry will respond to get operations. By

default, match list entries reject get operations. If a get operation targets a

list entry where PTL_ME_OP_GET is not set, it is treated as an operations

failure and PTL_SR_OPERATION_VIOLATIONS is incremented. If a full

event is delivered to the initiator, the ni_fail_type in the PTL_EVENT_ACK

event must be set to PTL_NI_OP_VIOLATION.

Note: It is not considered an error to have a match list entry that responds

to both put and get operations. In fact, a match list entry must be

configured to respond to both put and get operations to properly handle a

PtlFetchAtomic() or PtlSwap() operation.

65

PTL_ME_MANAGE_LOCAL Specifies that the offset used in accessing the memory region is managed

locally. By default, the offset is in the incoming message. When the offset

is maintained locally, the offset is incremented by the length of the

request so that the next operation (put and/or get) will access the next part

of the memory region.

Note that only one offset variable exists per match list entry. If both put

and get operations are performed on a match list entry, the value of that

single variable is updated each time.

PTL_ME_NO_TRUNCATE Specifies that the length provided in the incoming request cannot be

reduced to match the memory available in the region. This will cause the

matching to fail for a match list entry and continue with the next entry.

(The memory available in a memory region is determined by subtracting

the offset from the length of the memory region.) By default, if the length

in the incoming operation is greater than the amount of memory available,

the operation is truncated.

PTL_ME_USE_ONCE Specifies that the match list entry will only be used once and then

automatically unlinked by the implementation. If this option is not set, the

match list entry persists until it is explicitly unlinked or another unlink

condition is triggered.

PTL_ME_MAY_ALIGN Indicate that messages deposited into this match list entry may be aligned

by the implementation to a performance optimizing boundary. Essentially,

this is a performance hint to the implementation to indicate that the

application does not care about the specific placement of the data. This

option is only relevant when the PTL_ME_MANAGE_LOCAL option is set.

PTL_ME_ACK_DISABLE Specifies that an acknowledgment should not be sent for incoming put

operations, even if requested. By default, acknowledgments are sent for

put operations that request an acknowledgment. See Section 3.13.3 for

exceptions to this rule. This applies to both standard and counting events.

Acknowledgments are never sent for get operations. The data sent in the

reply serves as an implicit acknowledgment.

PTL_ME_UNEXPECTED_HDR_DISABLE Specifies that the header for a message delivered to this match list entry

should not be added to the unexpected list. This option only has meaning

if the match list entry is inserted into the overflow list. By creating a

match list entry which truncates messages to zero bytes, disables comm

events, and sets this option, a user may create a match list entry which

consumes no target side resources.

PTL_IOVEC Specifies that the start argument is a pointer to an array of type

ptl_iovec_t (Section 3.10.2) and the length argument is the length of the

array. This allows for a scatter/gather capability for match list entries. A

scatter/gather match list entry behaves exactly as a match list entry that

describes a single virtually contiguous region of memory. All other

semantics are identical.

PTL_ME_IS_ACCESSIBLE Indicate that this match list entry only contains memory addresses that are

accessible by the application.

PTL_ME_EVENT_LINK_DISABLE Specifies that this match list entry should not generate a

PTL_EVENT_LINK full event indicating the list entry successfully linked.

PTL_ME_EVENT_COMM_DISABLE Specifies that this match list entry should not generate full events that

indicate a communication operation. This includes PTL_EVENT_GET,

PTL_EVENT_PUT, PTL_EVENT_ATOMIC, and PTL_EVENT_SEARCH.

PTL_ME_EVENT_FLOWCTRL_DISABLE Specifies that this match list entry should not generate a

PTL_EVENT_PT_DISABLED full event that indicate a flow control failure.

66

PTL_ME_EVENT_SUCCESS_DISABLE Specifies that this match list entry should not generate full events if the

ni_fail_type would be PTL_OK. This flag does not affect counting events.

Disabling full events for successful operations is useful in scenarios when

a counting event is sufficient for completion, but more information is

needed for error recovery.

PTL_ME_EVENT_OVER_DISABLE Specifies that this match list entry should not generate overflow list full

events. This includes PTL_EVENT_PUT_OVERFLOW,

PTL_EVENT_GET_OVERFLOW, PTL_EVENT_ATOMIC_OVERFLOW, and

PTL_EVENT_FETCH_ATOMIC_OVERFLOW.

PTL_ME_EVENT_UNLINK_DISABLE Specifies that this match list entry should not generate auto-unlink

(PTL_EVENT_AUTO_UNLINK) or free (PTL_EVENT_AUTO_FREE) full events.

PTL_ME_EVENT_CT_COMM Enable the counting of communication events (PTL_EVENT_PUT,

PTL_EVENT_GET, PTL_EVENT_ATOMIC).

PTL_ME_EVENT_CT_OVERFLOW Enable the counting of overflow events (PTL_EVENT_PUT_OVERFLOW,

PTL_EVENT_GET_OVERFLOW, PTL_EVENT_ATOMIC_OVERFLOW,

PTL_EVENT_FETCH_ATOMIC_OVERFLOW).

PTL_ME_EVENT_CT_BYTES By default, counting events count events. When set, this option causes

bytes to be counted instead for success events. Byte counts must be

incremented exactly once per operation. The increment is by the number

of bytes counted (mlength). Failure events always increment the count by

one.

match_id Specifies the match criteria for the process identifier of the requester. The

constants PTL_PID_ANY and PTL_NID_ANY can be used to wildcard either

of the physical identifiers in the ptl_process_t structure, or PTL_RANK_ANY

can be used to wildcard the rank for logical addressing.

match_bits, ignore_bits Specify the match criteria to apply to the match bits in the incoming

request. The ignore_bits are used to mask out insignificant bits in the

incoming match bits. The resulting bits are then compared to the match

list entry’s match bits to determine if the incoming request meets the

match criteria.

Discussion: The default behavior from Portals 3.3 (no truncation and locally managed offsets) has been

changed to match the default semantics of the list entry, which does not provide matching.

When the PTL_ME_USE_ONCE option is set, an event associated with a target side operation (e.g. a

PTL_EVENT_PUT event) also implies that the associated match list entry has unlinked; hence, it is safe

on these match list entries to set the PTL_ME_EVENT_UNLINK_DISABLE option.

PTL_ME_EVENT_FLOWCTRL_DISABLE only disables flow control events which are the direct result

of an incoming message matching the current match list entry. This includes a message matching the

match list entry but the associated event queue is full or a message matching a match list entry in the

overflow list but the unexpected headers list is full. If flow control is enabled on the portal table entry and

a message does not match in either the priority or overflow lists, a PTL_EVENT_PT_DISABLED event

is always generated.

Although the MD, ME, and LE can all map inaccessible memory, only the ME and LE have an option to

allow the user to indicate to the implementation that the entire region is accessible. This is because the

typical usage model for the MD is expected to bind inaccessible memory, while a very common usage

model for both the ME and LE is expected to only use accessible memory.

67

3.12.2 PtlMEAppend

The PtlMEAppend() function creates a single match list entry. If PTL_PRIORITY_LIST or PTL_OVERFLOW_LIST is

specified by ptl_list, this entry is appended to the end of the appropriate list specified by ptl_list associated with the

portal table entry specified by pt_index for the portal table for ni_handle.

When a match list entry is posted to the priority list, the unexpected list is searched to see if a matching message has

been delivered in the overflow list prior to the posting of the match list entry. If so, an appropriate overflow event is

generated, the matching header is removed from the unexpected list, and a match list entry with the

PTL_ME_USE_ONCE option is not inserted into the priority list. If a persistent match list entry is posted to the priority

list, it may cause multiple overflow events to be generated, one for every matching entry in the unexpected list. No

permissions checking is performed on a matching message in the unexpected list. No searching of the unexpected list

is performed when a match list entry is posted to the overflow list. When the list entry has been linked (inserted) into

the specified list, a PTL_EVENT_LINK event is generated.

Discussion: Generally speaking, the user should attempt to insure that persistent match list entries (or

simple list entries) are inserted before messages arrive that match them. Appending of persistent entries

could have unexpected performance and resource usage characteristics if a large unexpected list has

accumulated, since a PtlMEAppend() that appends a persistent ME can cause multiple matches.

See the PtlLEAppend() definition in Section 3.11.2 for the definition of ptl_list_t.

Function Prototype for PtlMEAppend

int PtlMEAppend(ptl_handle_ni_t ni_handle,

ptl_pt_index_t pt_index,

const ptl_me_t ∗me,

ptl_list_t ptl_list,

void ∗user_ptr,

ptl_handle_me_t ∗me_handle);

Arguments

ni_handle input The interface handle to use.

pt_index input The portal table index where the match list entry should be appended.

me input Provides initial values for the user-visible parts of a match list entry. Other than its use for

initialization, there is no linkage between this structure and the match list entry maintained

by the API.

ptl_list input Determines whether the match list entry is appended to the priority list or the overflow list.

user_ptr input A user-specified value that is associated with each command that can generate an event.

The value does not need to be a pointer, but must fit in the space used by a pointer. This

value (along with other values) is recorded in full events associated with operations on this

match list entry.

me_handle output On successful return, this location will hold the newly created match list entry handle.

68

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the match list entry.

PTL_LIST_TOO_LONG Indicates that the resulting list is too long. The maximum length for a list is defined by

the interface.

Discussion: Tying commands to a user-defined value is useful at the target when the command needs to

be associated with a data structure maintained by the process outside of the portals library. For example,

an MPI implementation can set the user_ptr argument to the value of an MPI Request. This direct

association allows for processing of match list entries by the MPI implementation without a table look up

or a search for the appropriate MPI Request.

IMPLEMENTATION

NOTE 10:
Checking match_id Argument

Checking whether a match_id is a valid process identifier may require

global knowledge. However, PtlMEAppend() is not meant to cause

any communication with other nodes in the system. Therefore,

PTL_ARG_INVALID may not be returned in some cases where it would

seem appropriate.

3.12.3 PtlMEUnlink

The PtlMEUnlink() function can be used to unlink a match list entry from a list. If PtlMEUnlink() returned PTL_OK,

it is an error to use the match list entry handle after the call to PtlMEUnlink(). PtlMEUnlink() should return

PTL_IN_USE if the match list entry is on the overflow list and has associated unexpected headers.

PtlMEUnlink() is frequently used to implement the cancel of receive operations in higher level protocols. If the list

entry handle passed to PtlMEUnlink() has pending operations, e.g., an unfinished put operation, then PtlMEUnlink()

will return PTL_IN_USE, and the list entry will not be unlinked. An implementation must ensure that list entry

handles remain valid for calls to PtlMEUnlink() until the next call to PtlMEAppend() after the last event associated

with the list entry is delivered to an event queue or counting event (See Implementation Note 9). If the match list

entry has been unlinked before a call to PtlMEUnlink() but before the next call to PtlMEAppend(), PtlMEUnlink()

must return PTL_IN_USE.

Function Prototype for PtlMEUnlink

int PtlMEUnlink(ptl_handle_me_t me_handle);

Arguments

me_handle input The match list entry handle to be unlinked.

69

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_IN_USE Indicates that the match list entry has pending operations and cannot be unlinked.

3.12.4 PtlMESearch

The PtlMESearch() function is used to search for a message in the unexpected list associated with a specific portal

table entry specified by pt_index for the portal table for ni_handle. PtlMESearch() uses the exact same search of the

unexpected list as PtlMEAppend(); however, the match list entry specified in the PtlMESearch() call is never linked

into a priority list.

The PtlMESearch() function can be called in two modes. If ptl_search_op is set to PTL_SEARCH_ONLY, the

unexpected list is searched to support the MPI_Probe functionality. If ptl_search_op is set to PTL_SEARCH_DELETE,

the unexpected list is searched and any matching items are deleted from the list. When used with PTL_SEARCH_ONLY,

a PTL_EVENT_SEARCH event with ni_fail_type PTL_NI_OK is generated when a matching message was found in the

unexpected list. When used with PTL_SEARCH_DELETE, the event that is generated corresponds to the type of

operation that is found (e.g. PTL_EVENT_PUT_OVERFLOW, PTL_EVENT_GET_OVERFLOW,

PTL_EVENT_ATOMIC_OVERFLOW, or PTL_EVENT_FETCH_ATOMIC_OVERFLOW). In either case, if no matching message

is found, a PTL_EVENT_SEARCH event is generated with a failure indication of PTL_NI_NO_MATCH. If the match list

entry specified in the PtlMESearch() call is persistent, a full event is generated for every match in the unexpected list.

No permissions checking is performed during search; only matching criteria are used to determine if an event should

be generated. Users should use the generated event data to perform any required permissions check.

Event generation for the search functions works just as it would for an append function. If a search is performed with

full events disabled (either through option or through the absence of an event queue on the portal table entry), the

search will succeed, but no events will be generated. Status registers, however, are handled slightly differently for a

search in that a PtlMESearch() never causes a status register to be incremented.

See the PtlLESearch() definition in Section 3.11.4 for the definition of ptl_search_op and important notes associated

with implementing and using PtlMESearch().

Function Prototype for PtlMESearch

int PtlMESearch(ptl_handle_ni_t ni_handle,

ptl_pt_index_t pt_index,

const ptl_me_t ∗me,

ptl_search_op_t ptl_search_op,

void ∗user_ptr);

Arguments

ni_handle input The interface handle to use.

pt_index input The portal table index that should be searched.

me input Provides values for the user-visible parts of a match list entry to use for searching.

70

ptl_search_op input Determines whether the function only searches the list or searches the list and deletes the

matching entries from the list.

user_ptr input A user-specified value that is associated with each command that can generate an event.

The value does not need to be a pointer, but must fit in the space used by a pointer. This

value (along with other values) is recorded in full events associated with operations on this

match list entry.

Return Codes

PTL_OK Indicates success.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

Discussion: Tying commands to a user-defined value is useful at the target when the command needs to

be associated with a data structure maintained by the process outside of the portals library. For example,

an MPI implementation can set the user_ptr argument to the value of an MPI Request. This direct

association allows for processing of match list entries by the MPI implementation without a table look up

or a search for the appropriate MPI Request.

3.13 Events and Event Queues

Event queues are used to log operations performed on memory descriptors, list entries, match list entries, or portal

table entries. In particular, they signal the end of a data transmission into or out of a memory region. They can also be

used to hold acknowledgments for completed put operations and indicate when a list entry has been unlinked.

Multiple memory descriptors or list entries can share a single event queue.

In addition to the ptl_handle_eq_t type, the Portals API defines two types associated with full events: The

ptl_event_kind_t type is an integral type which defines the kinds of events that can be stored in an event queue. The

ptl_event_t type defines the structure that is placed into event queues.

The Portals API provides five functions for dealing with event queues: The PtlEQAlloc() function is used to allocate

the API resources needed for an event queue, the PtlEQFree() function is used to release these resources, the

PtlEQGet() function can be used to get the next full event from an event queue, the PtlEQWait() function can be used

to block a process (or thread) until an event queue has at least one full event, and the PtlEQPoll() function can be used

to test or wait on multiple event queues.

3.13.1 Kinds of Events

The Portals API defines sixteen types of events that can be logged:

Event Type Constants (ptl_event_kind_t)

PTL_EVENT_GET A get operation completed at the target . Portals will not read from

memory on behalf of this operation once this event has been logged.

71

PTL_EVENT_GET_OVERFLOW A list entry posted by PtlLEAppend() or PtlMEAppend() matched a get

header in the unexpected list.

PTL_EVENT_PUT A put operation completed at the target . Portals will not alter memory on

behalf of this operation once this event has been logged.

PTL_EVENT_PUT_OVERFLOW A list entry posted by PtlLEAppend() or PtlMEAppend() matched a put

header in the unexpected list.

PTL_EVENT_ATOMIC An atomic operation that does not return data to the initiator completed at

the target . Portals will not read from or alter memory on behalf of this

operation once this event has been logged.

PTL_EVENT_ATOMIC_OVERFLOW A list entry posted by PtlLEAppend() or PtlMEAppend() matched an

atomic header in the unexpected list for an operation which does not

return data to the initiator .

PTL_EVENT_FETCH_ATOMIC An atomic operation that returns data to the initiator completed at the

target . These include PtlFetchAtomic() and PtlSwap(). Portals will not

read from or alter memory on behalf of this operation once this event has

been logged.

PTL_EVENT_FETCH_ATOMIC_OVERFLOW A list entry posted by PtlLEAppend() or PtlMEAppend() matched an

atomic header in the unexpected list for an operation which returns data to

the initiator .

PTL_EVENT_REPLY A reply operation has completed at the initiator , either due to a get

operation or an atomic which returned data to the initiator. This event is

logged after the data (if any) from the reply has been written into the

memory descriptor. Receipt of a PTL_EVENT_REPLY indicates remote

completion of the operation.

PTL_EVENT_SEND A put or atomic has completed at the initiator . This event is logged after

it is safe to reuse the buffer, but does not mean the message has been

processed by the target .

PTL_EVENT_ACK An acknowledgment was received. This event is logged when the

acknowledgment is received. Receipt of a PTL_EVENT_ACK indicates

remote completion of the operation. Remote completion indicates that

local completion has also occurred.

PTL_EVENT_PT_DISABLED Resources exhaustion has occurred on this portal table entry, which has

entered a flow control situation. See Section 2.7.

PTL_EVENT_LINK A list entry posted by PtlLEAppend() or PtlMEAppend() has successfully

linked into the specified list.

PTL_EVENT_AUTO_UNLINK A list entry/match list entry was automatically unlinked (Sections 3.12.2

and 3.11.2). A PTL_EVENT_AUTO_UNLINK event is generated even if the

list entry/match list entry passed into the PtlLEAppend()/PtlMEAppend()

operation was marked with the PTL_LE_USE_ONCE/PTL_ME_USE_ONCE

option and found a corresponding unexpected message before being

“linked” into the priority list. A PTL_EVENT_AUTO_UNLINK must be

delivered after all PTL_EVENT_GET, PTL_EVENT_PUT,

PTL_EVENT_ATOMIC, and PTL_EVENT_FETCH_ATOMIC events associated

with the list entry/match list entry have been delivered.

PTL_EVENT_AUTO_FREE A list entry/match list entry previously automatically unlinked from the

overflow list is now free to be reused by the application. A

PTL_EVENT_AUTO_FREE event is generated when Portals will not generate

any further events which resulted from messages delivered into the

specified overflow list entry. This also indicates that the unexpected list

contains no more items associated with this entry.

72

PTL_EVENT_SEARCH A PtlLESearch() or PtlMESearch() call completed. If a matching

message was found in the overflow list, PTL_NI_OK is returned in the

ni_fail_type field of the event and the event queue entries are filled in as if

it were an overflow event. Otherwise, a failure is recorded in the

ni_fail_type field using PTL_NI_NO_MATCH, the user_ptr is filled in

correctly, and the other fields are undefined.

Overflow events are used to indicate that a message matching the list entry or match list entry posted by

PtlLEAppend() or PtlMEAppend() was previously delivered into the overflow list and its header was found in the

unexpected list (See Section 2.4). The operation was processed as specified by the list entry in the overflow list to

which it matched, meaning that all, some, or none of the message may have been written to or read from the matching

list entry in the overflow list. The full event’s start will point to the start of the message (or where the message was

read, in the case of a get operation). The rlength and mlength of the full event may be used to determine whether the

message was fully delivered or truncated.

Discussion: When an application wishes to record unexpected messages, it may place an entry on the

overflow list which has no memory associated with it and truncates all messages to zero bytes. The

hdr_data field, along with a higher-level protocol, may be used to complete the transaction at a later

time. In the case of MPI, a number of match list entries on the overflow list with locally managed offsets

may additionally be used to optimize unexpected short messages.

3.13.2 Event Occurrence

The diagrams in Figure 3.1 show when events occur in relation to portals operations and whether they are recorded

on the initiator or the target side. Note that local and remote events are not synchronized or ordered with respect to

each other.

Figure 3.1(a) shows the events that are generated for a put operation including the optional acknowledgment. The

diagram shows which events are generated at the initiator and the target side of the put operation. Figure 3.1(b) shows

the corresponding events for a get operation, and Figure 3.1(c) shows the events generated for an atomic operation.

When the initiator of an operation receives a remote completion event (e.g. PTL_EVENT_ACK), local completion is

also implied. While no ordering is required between local and remote completion events at the initiator (i.e. there is

no guaranteed ordering between PTL_EVENT_SEND and PTL_EVENT_ACK for the same operation), a user may reuse a

buffer after the remote completion event is received.

If, as a result of any of the operations shown in the diagrams of Figure 3.1, a match list entry is unlinked, then a

PTL_EVENT_AUTO_UNLINK event is generated on the target . This is not shown in the diagrams. No initiator events are

generated if the memory descriptor does not have an attached event queue. Similarly, no target events are generated if

the portal table entry associated with the matched list entry does not have an attached event queue. See the

description of PTL_EQ_NONE on page 47 of Section 3.10.1) for more information. The various types of events can also

be disabled by type (e.g. see the description of PTL_ME_EVENT_COMM_DISABLE and

PTL_ME_EVENT_UNLINK_DISABLE on page 66, also in Section 3.12.1.).

Table 3.2 summarizes the portals event types and where each event type may be generated.

3.13.3 Failure Notification

There are three ways in which operations may fail to complete successfully: the system (hardware or software) can

fail in a way that makes the message undeliverable, a permissions violation can occur at the target, or resources can

be exhausted at a target that has enabled flow-control. In any other scenario, every operation that is started will

73

(a) put operation with optional acknowledgment (b) get operation

(c) FetchAtomic operation

Figure 3.1. Portals Operations and Event Types: The red bars indicate the

times a local memory descriptor is considered to be in use by the system; i.e., it

has operations pending. Users should not modify memory descriptors or match

list entries during those periods.

eventually complete. While an operation is in progress, the memory on the target associated with the operation

should not be viewed (in the case of a put or a reply) or altered on the initiator side (in the case of a put or get).

Operation completion, whether successful or unsuccessful, is final. That is, when an operation completes, the

memory associated with the operation will no longer be read or altered by the operation. A network interface can use

the integral type ptl_ni_fail_t to define specific information regarding the failure of the operation and record this

information in the ni_fail_type field of an full event. Portals defines a number of event failure constants:

Event Failure Type Constants (ptl_ni_fail_t)

PTL_NI_OK The operation causing the event was successful.

PTL_NI_UNDELIVERABLE Indicates a system failure that prevents message delivery.

PTL_NI_PT_DISABLED Indicates that the portal table entry at the target was disabled and did not

process the operation, either because the entry was disabled with

PtlPTDisable() or because the entry provides flow control and a resource

has been exhausted. This failure type should only be returned on initiator

events.

PTL_NI_DROPPED Indicates that the message associated with this full event was dropped at

the target for reasons other than a disabled portal table entry. This failure

type should only be returned on initiator events.

74

PTL_NI_PERM_VIOLATION Indicates that the remote Portals addressing has indicated a permissions

violation for the operation that caused this event. This failure type should

only be returned on initiator events.

PTL_NI_OP_VIOLATION Indicates that the remote Portals addressing has indicated an operation

violation for the operation that caused this event. This failure type should

only be returned on initiator events.

To allow PTL_EVENT_SEND events to be local operations, all errors requiring remote information are delivered in

PTL_EVENT_ACK or PTL_EVENT_REPLY events. This means that a PTL_EVENT_ACK will be delivered if it is requested,

except when: 1) the message is successfully delivered at the target and the remote target has disabled event

generation, 2) flow control is not enabled on the target portal table entry and the message does not match in either the

priority list or overflow list or the message matches in the overflow list and the unexpected headers list is full, or 3) a

locally generated failure is delivered in the PTL_EVENT_SEND. Certain classes of failures (e.g. a

PTL_NI_UNDELIVERABLE that results from the network bifurcating) may require a local timeout to guarantee that the

PTL_EVENT_ACK or PTL_EVENT_REPLY event is delivered.

Discussion: Because remote errors are indicated in the PTL_EVENT_ACK or PTL_EVENT_REPLY

events, the PTL_EVENT_SEND event only guarantees that the Portals implementation will not touch the

buffer again. If the user intends to recover from a remote error, then the user cannot determine that an

operation is done until the PTL_EVENT_ACK or PTL_EVENT_REPLY event is received.

IMPLEMENTATION

NOTE 11:
Completion of portals operations

Portals guarantees that every operation started will finish with an event

if events are not disabled. While this document cannot enforce or

recommend a suitable time, a quality implementation will keep the

amount of time between an operation initiation and a corresponding

event as short as possible. That includes operations that do not

complete successfully. Timeouts of underlying protocols should be

chosen accordingly.

3.13.4 The Event Structure

An event queue contains ptl_event_t structures. An operation on the target needs information about the local match

list entry modified, the initiator of the operation and the operation itself. The initiator , in contrast, can track all

information about the attempted operation; however, it does need the result of the operation and a pointer to resolve

back to the local structure tracking the information about the operation.

Many fields in the ptl_event_t structure only have meaning for a subset of the event types. Further, an implementation

is not required to provide all fields in the ptl_event_t structure when the event is reporting an error. Table 3.3 defines

which fields are defined in both success and error conditions.

75

Table 3.2. Event Type Summary: A list of event types and where (initiator or

target) they can occur.

Event Type initiator target

PTL_EVENT_GET •

PTL_EVENT_GET_OVERFLOW •

PTL_EVENT_PUT •

PTL_EVENT_PUT_OVERFLOW •

PTL_EVENT_ATOMIC •

PTL_EVENT_ATOMIC_OVERFLOW •

PTL_EVENT_FETCH_ATOMIC •

PTL_EVENT_FETCH_ATOMIC_OVERFLOW •

PTL_EVENT_REPLY •

PTL_EVENT_SEND •

PTL_EVENT_ACK •

PTL_EVENT_PT_DISABLED •

PTL_EVENT_LINK •

PTL_EVENT_AUTO_UNLINK •

PTL_EVENT_AUTO_FREE •

PTL_EVENT_SEARCH •

typedef struct {

void ∗start;

void ∗user_ptr;

ptl_hdr_data_t hdr_data;

ptl_match_bits_t match_bits;

ptl_size_t rlength;

ptl_size_t mlength;

ptl_size_t remote_offset;

ptl_uid_t uid;

ptl_process_t initiator; /∗ nid, pid or rank ∗/

ptl_event_kind_t type;

ptl_list_t ptl_list;

ptl_pt_index_t pt_index;

ptl_ni_fail_t ni_fail_type;

ptl_op_t atomic_operation;

ptl_datatype_t atomic_type;

} ptl_event_t;

76

Members

start The starting location (virtual, byte address) where the message has been

placed. The start variable is the sum of the start variable in the list entry

and the offset used for the operation. The offset can be determined by the

operation (Section 3.15) for a remote managed match list entry or by the

local memory descriptor (Section 3.12). In the case of iovecs, the start is

still the first address where the message was placed or read from, even if

multiple iovec entries were used.

When an append call matches a message that has arrived in the overflow

list, the start address points to the address in the overflow list where the

matching message resides. This may require the application to copy the

message to the desired buffer.

user_ptr The user-specified value associated with the local command that

generated the full event. Note that, unlike hdr_data, the user_ptr is a

locally-generated value. For example, the user_ptr for a full event of type

PTL_EVENT_PUT is the user_ptr specified to the associated call to

PtlLEAppend() or PtlMEAppend(). For further discussion of user_ptr,

see Section 3.12.2.

hdr_data 64 bits of out-of-band user data (Section 3.15.2).

match_bits The match bits specified by the initiator . This field should be set to 0 if

the event is associated with a non-matching list entry.

rlength The length (in bytes) specified in the request.

mlength The length (in bytes) of the data that was manipulated by the operation.

For PTL_EVENT_SEND events, the manipulated length is the number of

bytes sent, which may be larger than the number of bytes delivered

(which can be determined by examining the mlength of the associated

PTL_EVENT_ACK event). For PTL_EVENT_PUT, PTL_EVENT_GET,

PTL_EVENT_ATOMIC, or PTL_EVENT_FETCH_ATOMIC events, the

manipulated length is the number of bytes manipulated (delivered into or

read from memory) at the target, which may be less than the rlength in the

case of truncated operations. For PTL_EVENT_SEARCH and the overflow

events, the manipulated length is the same value as the mlength returned

in the corresponding PTL_EVENT_PUT, PTL_EVENT_GET,

PTL_EVENT_ATOMIC, or PTL_EVENT_FETCH_ATOMIC event generated

when the operation completed in the list entry on the overflow list.

remote_offset The offset requested/used by the other end of the communication. At the

initiator, this is the displacement (in bytes) into the memory region that

the operation used at the target. The offset can be determined by the

operation (Section 3.15) for a remote managed offset in a match list entry

or by the match list entry (Section 3.12) at the target for a locally

managed offset.

At the target, this is the offset requested by the initiator.

uid The user identifier of the initiator .

initiator The identifier of the initiator .

type Indicates the type of the full event.

ptl_list The list entry or match list entry list in which the operation was delivered

(See Sections 3.11.2 and 3.12.2).

pt_index The portal table index where the message arrived.

77

ni_fail_type Used to convey the failure of an operation. Success is indicated by

PTL_NI_OK; see section 3.13.3.

atomic_operation If this full event corresponds to an atomic operation, this indicates the

atomic operation that was performed.

atomic_type If this full event corresponds to an atomic operation, this indicates the

data type of the atomic operation that was performed.

Discussion: Notably, the full event structure does not contain a handle to the ME, LE, or MD that was

associated with the full event. The user_ptr field is provided as the mechanism for the user to determine

which ME, LE, or MD an even might be associated with.

Table 3.3. Event Field Definition: Specification of which fields in a

ptl_event_t structure are defined for a given event type. Fields marked with a

• are defined for both success and error conditions. Fields marked with a ◦ are

defined only for success conditions.

Event Type ty
p

e

in
it

ia
to

r

p
t_

in
d

ex

p
tl

_
li

st

u
id

m
a

tc
h

_
b

it
s

rl
en

g
th

m
le

n
g

th

re
m

o
te

_
o

ff
se

t

st
a

rt

u
se

r_
p

tr

h
d

r_
d

a
ta

n
i_

fa
il

_
ty

p
e

a
to

m
ic

_
o

p
er

a
ti

o
n

a
to

m
ic

_
ty

p
e

PTL_EVENT_GET • • • • • ◦ • ◦ • • •

PTL_EVENT_GET_OVERFLOW • • • • • ◦ • ◦ • • •

PTL_EVENT_PUT • • • • • ◦ • ◦ • • • •

PTL_EVENT_PUT_OVERFLOW • • • • • ◦ • ◦ • • • •

PTL_EVENT_ATOMIC • • • • • ◦ • ◦ • • • • • •

PTL_EVENT_ATOMIC_OVERFLOW • • • • • ◦ • ◦ • • • • • •

PTL_EVENT_FETCH_ATOMIC • • • • • ◦ • ◦ • • • • • •

PTL_EVENT_FETCH_ATOMIC_OVERFLOW • • • • • ◦ • ◦ • • • • • •

PTL_EVENT_REPLY • ◦ ◦ ◦ • •

PTL_EVENT_SEND • ◦ • •

PTL_EVENT_ACK • ◦ ◦ ◦ • •

PTL_EVENT_PT_DISABLED • • •

PTL_EVENT_LINK • • • •

PTL_EVENT_AUTO_UNLINK • • • •

PTL_EVENT_AUTO_FREE • • • •

PTL_EVENT_SEARCH • • • • • • • • • • • • • •

3.13.5 PtlEQAlloc

The PtlEQAlloc() function is used to build an event queue. An event queue has room for at least count number of full

events. If the event queue overflows, older events will be overwritten by new ones in most situations. If flow control

is enabled on the portal table entry (See Sections 3.7.1 and 2.7) for an incoming operation, events associated with that

operation will not cause an overflow, but will instead trigger a flow control event.

78

Function Prototype for PtlEQAlloc

int PtlEQAlloc(ptl_handle_ni_t ni_handle,

ptl_size_t count,

ptl_handle_eq_t ∗eq_handle);

Arguments

ni_handle input The interface handle with which the event queue will be associated.

count input A hint as to the number of full events to be stored in the event queue. An implementation

may provide space for more than the requested number of event queue slots.

eq_handle output On successful return, this location will hold the newly created event queue handle.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the event queue.

IMPLEMENTATION

NOTE 12:
Size of event queue and reserved space

Because flow control may be enabled on the portal table entries that

this EQ is attached to, the implementation should insure that the space

allocated for the EQ is large enough to hold the requested number of

full events plus the number of portal table entries associated with this

ni_handle. For each PtlPTAlloc() that enables flow control and uses a

given EQ, one space should be reserved for a

PTL_EVENT_PT_DISABLED full event associated with that EQ.

3.13.6 PtlEQFree

The PtlEQFree() function releases the resources associated with an event queue. It is up to the user to ensure that no

memory descriptors or portal table entries are associated with the event queue before it is freed.

Function Prototype for PtlEQFree

int PtlEQFree(ptl_handle_eq_t eq_handle);

Arguments

eq_handle input The event queue handle to be released.

79

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that eq_handle is not a valid event queue handle.

3.13.7 PtlEQGet

The PtlEQGet() function is a non-blocking function that can be used to get the next event in an event queue. The

event is removed from the queue.

Function Prototype for PtlEQGet

int PtlEQGet(ptl_handle_eq_t eq_handle,

ptl_event_t ∗event);

Arguments

eq_handle input The event queue handle.

event output On successful return, this location will hold the values associated with the next event in the

event queue. event must point to a valid ptl_event_t structure.

Return Codes

PTL_OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and that at least one full event between this

full event and the last full event obtained—using PtlEQGet(), PtlEQWait(), or

PtlEQPoll()—from this event queue has been dropped due to limited space in the event

queue.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_EQ_EMPTY Indicates that eq_handle is empty or another thread is waiting in PtlEQWait().

PTL_ARG_INVALID Indicates that eq_handle is not a valid event queue handle.

3.13.8 PtlEQWait

The PtlEQWait() function can be used to block the calling process or thread until there is a full event in an event

queue. This function returns the next event in the event queue and removes this event from the queue. In the event

that multiple threads are waiting on the same event queue, PtlEQWait() is guaranteed to wake exactly one thread, but

the order in which they are awakened is not specified.

80

Function Prototype for PtlEQWait

int PtlEQWait(ptl_handle_eq_t eq_handle,

ptl_event_t ∗event);

Arguments

eq_handle input The event queue handle to wait on. The calling process (thread) will be blocked until the

event queue is not empty.

event output On successful return, this location will hold the values associated with the next event in the

event queue. event must point to a valid ptl_event_t structure.

Return Codes

PTL_OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and that at least one full event between this

full event and the last full event obtained—using PtlEQGet(), PtlEQWait(), or

PtlEQPoll()—from this event queue has been dropped due to limited space in the event

queue.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that eq_handle is not a valid event queue handle.

PTL_INTERRUPTED Indicates that PtlEQFree() or PtlNIFini() was called by another thread while this thread

was waiting in PtlEQWait(). See Implementation note 13 for more information.

IMPLEMENTATION

NOTE 13:
PTL_INTERRUPTED return code

While adding complexity to the implementation of PtlEQWait() and

PtlEQPoll(), allowing PtlEQFree() or PtlNIFini() to interrupt the

potentially blocking calls is necessary for failure tolerance.

3.13.9 PtlEQPoll

The PtlEQPoll() function can be used by the calling process to look for a full event from a set of event queues.

Should an event arrive on any of the queues contained in the array of event queue handles, the full event will be

returned in event and which will contain the index of the event queue from which the event was taken. In the event

that multiple threads are polling the same event queue, PtlEQPoll() is guaranteed to wake exactly one thread, but the

order in which they are awakened is not specified.

If PtlEQPoll() returns success, the corresponding full event is consumed. PtlEQPoll() provides a timeout to allow

applications to poll, block for a fixed period, or block indefinitely. PtlEQPoll() is sufficiently general to implement

both PtlEQGet() and PtlEQWait(), but these functions may allow significant optimization. PtlEQPoll() should poll the

list of queues in a round-robin fashion.

81

Function Prototype for PtlEQPoll

int PtlEQPoll(const ptl_handle_eq_t ∗eq_handles,

unsigned int size,

ptl_time_t timeout,

ptl_event_t ∗event,

unsigned int ∗which);

Arguments

eq_handles input An array of event queue handles. All the handles must refer to the same interface.

size input Length of the array.

timeout input Time in milliseconds to wait for a full event to occur on one of the event queue handles.

The constant PTL_TIME_FOREVER can be used to indicate an infinite timeout.

event output On successful return (PTL_OK or PTL_EQ_DROPPED), this location will hold the values

associated with the next event in the event queue. event must point to a valid ptl_event_t

structure.

which output On successful return, this location will contain the index into eq_handles of the event

queue from which the event was taken.

Return Codes

PTL_OK Indicates success.

PTL_EQ_DROPPED Indicates success (i.e., an event is returned) and that at least one full event between this

full event and the last full event obtained from the event queue indicated by which has

been dropped due to limited space in the event queue.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_EQ_EMPTY Indicates that the timeout has been reached and all of the event queues are empty.

PTL_INTERRUPTED Indicates that PtlEQFree() or PtlNIFini() was called by another thread while this thread

was waiting in PtlEQPoll(). See Implementation note 13 for more information.

3.14 Lightweight Counting Events

Full events copy a significant amount of data from the implementation to the application. While this data is critical

for many uses (e.g. MPI), other programming models (e.g. PGAS) require very little information about individual

operations. To support lightweight operations, Portals provide a lightweight event mechanism known as counting

events.

Counting events are similar in semantics and event occurrence to full events (See Section 3.13.2). A counting event

may be independently enabled/disabled with options on the memory descriptor, list entry, or match list entry, similar

to full events. Unlike full events, counting events are disabled by default and must be explicitly enabled for a given

event type. Counting events are enabled by attaching a ptl_handle_ct_t to a memory descriptor or list entry and

specifying which operations are to be counted in the options field. By default, counting events count the total number

82

of operations; however, a counting event may also count the number of bytes successfully manipulated for counted

operations by setting an option on the associated memory descriptor or list entry.

Counting events introduce two additional types: a user-visible representation of the counting event itself, of type

ptl_ct_event_t, and a handle to a counting event, of type ptl_handle_ct_t. A counting event is allocated through a call

to PtlCTAlloc(), queried with PtlCTGet(), PtlCTWait(), or PtlCTPoll(), set with PtlCTSet(), incremented with

PtlCTInc(), and freed through a call to PtlCTFree(). To mirror the failure semantics of the full events, counting events

count success and failure events independently.

IMPLEMENTATION

NOTE 14:
Minimizing cost of counting events

A quality implementation will attempt to minimize the cost of counting

events. In many implementations, this can be done by making the

ptl_handle_ct_t type a pointer to a ptl_ct_event_t structure and

providing PtlCTGet(), PtlCTWait(), PtlCTSet(), and PtlCTInc() as

macros which manipulate the internal structure. This may not be

possible in hardware offload implementations, but PtlCTGet() should

remain as close to a pair of loads in performance as possible.

Counting events are a critical component of triggered operations, described in Section 3.16.

3.14.1 The Counting Event Type

A ct_handle refers to a ptl_ct_event_t structure. The user visible portion of this structure contains both a count of

succeeding events and a count of failing events.

typedef struct {

ptl_size_t success;

ptl_size_t failure;

} ptl_ct_event_t;

Members

success A count associated with successful events that counts events or bytes.

failure A count of the number of failed events associated with the counting event.

3.14.2 PtlCTAlloc

The PtlCTAlloc() function is used to allocate a counting event that counts either operations or bytes manipulated for

operations on associated memory descriptors, list entries, and match list entries. While a PtlCTAlloc() call could be

as simple as a malloc of a structure holding the counting event, it may be necessary to allocate the counting event in

low memory or some other protected space. Also, it may be desirable to place all counting events in a pre-allocated

array and make the ct_handle a simple index. A newly allocated counting event will have both the success and failure

counts initialized to zero.

83

Function Prototype for PtlCTAlloc

int PtlCTAlloc(ptl_handle_ni_t ni_handle,

ptl_handle_ct_t ∗ct_handle);

Arguments

ni_handle input The interface handle with which the counting event will be associated.

ct_handle output On successful return, this location will hold the newly created counting event handle.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

PTL_NO_SPACE Indicates that there is insufficient memory to allocate the counting event.

3.14.3 PtlCTFree

The PtlCTFree() function releases the resources associated with a counting event. It is up to the user to ensure that no

memory descriptors or match list entries are associated with the counting event before it is freed. On a successful

return, the counting event has been released and is ready to be reallocated. As a side-effect of PtlCTFree(), any

triggered operations waiting on the freed counting event whose thresholds have not been met will be deleted.

Function Prototype for PtlCTFree

int PtlCTFree(ptl_handle_ct_t ct_handle);

Arguments

ct_handle input The counting event handle to be released.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

84

3.14.4 PtlCTCancelTriggered

In certain circumstances, it may be necessary to cancel triggered operations that are pending. For example, an error

condition may mean that a counting event will never reach the designated threshold. PtlCTCancelTriggered() is

provided to handle these circumstances. Upon return from PtlCTCancelTriggered(), all triggered operations waiting

on ct_handle are permanently deleted. The operations are not triggered and will not modify any application-visible

state. All other state associated with ct_handle is left unchanged.

Function Prototype for PtlCTCancelTriggered

int PtlCTCancelTriggered(ptl_handle_ct_t ct_handle);

Arguments

ct_handle input The counting event handle associated with the triggered operations to be canceled.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

3.14.5 PtlCTGet

The PtlCTGet() function is used to obtain the current value of a counting event. Calling PtlCTSet() or PtlCTFree() in

a separate thread while PtlCTGet() is executing may yield undefined results in the returned value.

Function Prototype for PtlCTGet

int PtlCTGet(ptl_handle_ct_t ct_handle,

ptl_ct_event_t ∗event);

Arguments

ct_handle input The counting event handle.

event output On successful return, this location will hold the current value associated with the counting

event. event must point to a valid ptl_ct_event_t structure.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

85

3.14.6 PtlCTWait

The PtlCTWait() function provides blocking semantics to wait for a counting event to reach a given value.

PtlCTWait() returns when either the success field of a counting event is greater than or equal to the test value or when

the failure field is non-zero. All threads that are waiting on a single counting event with a given test value will return

from PtlCTWait() when that test value is reached.

Function Prototype for PtlCTWait

int PtlCTWait(ptl_handle_ct_t ct_handle,

ptl_size_t test,

ptl_ct_event_t ∗event);

Arguments

ct_handle input The counting event handle.

test input On successful return, the success field of the counting event will be greater than this value

or the failure field of the counting event will be non-zero.

event output On successful return, this location will hold the current value associated with the counting

event. event must point to a valid ptl_ct_event_t structure.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

PTL_INTERRUPTED Indicates that PtlCTFree() or PtlNIFini() was called by another thread while this thread

was waiting in PtlCTWait(). See Implementation note 13 for more information.

3.14.7 PtlCTPoll

The PtlCTPoll() function can be used to look for one of an array of counting events where the success field has

reached its respective test value. Should a counting event reach the test value for any of the counting events contained

in the array of counting event handles, the value of the counting event will be returned in event and which will contain

the index of the counting event from which the value was returned. PtlCTPoll() will also return whenever the failure

field of any of the counting events is non-zero.

PtlCTPoll() provides a timeout to allow applications to poll, block for a fixed period, or block indefinitely.

PtlCTPoll() should test the list of counting events in a round-robin fashion. This cannot guarantee fairness but meets

common expectations.

86

Function Prototype for PtlCTPoll

int PtlCTPoll(const ptl_handle_ct_t ∗ct_handles,

const ptl_size_t ∗tests,

unsigned int size,

ptl_time_t timeout,

ptl_ct_event_t ∗event,

unsigned int ∗which);

Arguments

ct_handles input An array of counting event handles. All of the handles must refer to the same interface.

tests input An array of success values. PtlCTPoll() returns when any counting event in ct_handles

would return from PtlCTWait() with the corresponding test in tests.

size input Length of the ct_handles and tests arrays.

timeout input Time in milliseconds to wait for an event to occur on one of the counting event handles.

The constant PTL_TIME_FOREVER can be used to indicate an infinite timeout.

event output On successful return, this location will hold the current value associated with the counting

event that caused PtlCTPoll() to return. event must point to a valid ptl_ct_event_t structure.

which output On successful return, this location will contain the index into ct_handles of the counting

event that reached its test value.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates an invalid argument (e.g. a bad ct_handle).

PTL_CT_NONE_REACHED Indicates that none of the counting events reached their test before the timeout was

reached.

PTL_INTERRUPTED Indicates that PtlCTFree() or PtlNIFini() was called by another thread while this thread

was waiting in PtlCTPoll(). See Implementation note 13 for more information.

3.14.8 PtlCTSet

The PtlCTSet() function is used to set a new value for a counting event. Each field in the counting event is updated

atomically relative to other updates of that field. However, there is no guarantee that the two fields are updated

atomically relative to each other. The counting event must be updated before returning from PtlCTSet(), however the

update may not be immediately visible to PtlCTGet(), particularly in hardware offload implementations. Both the

atomicity of field updates and the delay in updating the user-visible portions of the counting event may be visible to

the user, but should not affect correctness in common usage scenarios.

Function Prototype for PtlCTSet

int PtlCTSet(ptl_handle_ct_t ct_handle,

ptl_ct_event_t new_ct);

87

Arguments

ct_handle input The counting event handle.

new_ct input On successful return, the value of the counting event will have been set to this value.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

3.14.9 PtlCTInc

PtlCTInc() provides the ability to increment the success or failure field of a counting event. The update is atomic

relative to other modifications of the counting event. To simplify implementation, the increment field can only be

non-zero for either the success or failure field in a given call to PtlCTInc(). The counting event must be updated

before returning from PtlCTInc(), however the update may not be immediately visible to PtlCTGet(), particularly in

hardware offload implementations. This may be visible to the user, but should not affect correctness in common

usage scenarios.

Function Prototype for PtlCTInc

int PtlCTInc(ptl_handle_ct_t ct_handle,

ptl_ct_event_t increment);

Arguments

ct_handle input The counting event handle.

increment input On successful return, the value of the counting event will have been incremented by this

value.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that ct_handle is not a valid counting event handle.

3.15 Data Movement Operations

The Portals API provides five data movement operations: PtlPut(), PtlGet(), PtlAtomic(), PtlFetchAtomic(), and

PtlSwap().

88

3.15.1 Portals Acknowledgment Type Definition

Portals put and atomic operations which do not return data may optional request an acknowledgment upon message

delivery. Values of the type ptl_ack_req_t are used to specify the type of acknowledgment requested by the initiator .

Acknowledgments are sent by the target when the operation has completed (i.e., when the data has been written to a

list entry of the target process). When counting of acknowledgment events is enabled, the PTL_MD_EVENT_CT_BYTES

option is set, and the operation is successful, the manipulated length (mlength) from the target is counted. If the event

would indicate “failure” or the PTL_MD_EVENT_CT_BYTES option is not set, the number of acknowledgments is

counted.

Ack Request Constants (ptl_ack_req_t)

PTL_ACK_REQ An acknowledgement capable of generating both a full event and

counting event is requested.

PTL_CT_ACK_REQ An acknowledgement capable of generating a counting event is requested.

A full event will not be generated, even if an event queue is associated

with the memory descriptor.

PTL_OC_ACK_REQ An acknowledgment capable of generating a counting event upon

operation completion is requested. An operation is considered completed

when it has successfully completed Portals operation processing at the

target . PTL_OC_ACK_REQ does not support the PTL_MD_EVENT_CT_BYTES

option. The operation completion acknowledgement will indicate success

as long as operation processing completed successfully. A message being

dropped due to a failure to match or a permissions violation does not

represent an operational failure.

PTL_NO_ACK_REQ No acknowledgement is requested.

Discussion: The PTL_CT_ACK_REQ and PTL_OC_ACK_REQ acknowledgement types provide

significantly weaker semantics than PTL_ACK_REQ, in that the acknowledgement from the target may

only contain data necessary to generate a counting event, which may improve efficiency.

The PTL_OC_ACK_REQ acknowledgement type is useful when only operation counting is required and

it is known that there is a list entry at the target that will accept the message. The PTL_OC_ACK_REQ

acknowledgement type may be more efficient in some implementations because the PTL_OC_ACK_REQ

acknowledgement type communicates no information about the state of the target when the message

arrived.

3.15.2 PtlPut

The PtlPut() function initiates an asynchronous put operation. There are several events associated with a put

operation: completion of the send on the initiator node (PTL_EVENT_SEND) and the receipt of an acknowledgment

(PTL_EVENT_ACK) indicating that the operation was accepted by the target . The event PTL_EVENT_PUT is used at the

target node to indicate the end of data delivery. In addition, PTL_EVENT_PUT_OVERFLOW can be used on the target

node when a new entry being appended to a priority list matches a message that arrived before the corresponding

match list entry had been associated with the target portal table entry (Figure 3.1 on page 74).

These (local) events will be logged using full events in the event queue or counting events in the ct_handle associated

with the memory descriptor (md_handle) used in the put operation. Using a memory descriptor that does not have

either an associated event queue or counting event results in these events being discarded. In this case, the caller must

have another mechanism (e.g., a higher level protocol) for determining when it is safe to modify the memory region

89

associated with the memory descriptor.

The local (initiator) offset is used to determine the starting address of the memory region within the region specified

by the memory descriptor and the length specifies the length of the region in bytes. It is an error for the local offset

and length parameters to specify memory outside the memory described by the memory descriptor.

Function Prototype for PtlPut

int PtlPut(ptl_handle_md_t md_handle,

ptl_size_t local_offset,

ptl_size_t length,

ptl_ack_req_t ack_req,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void ∗user_ptr,

ptl_hdr_data_t hdr_data);

Arguments

md_handle input The memory descriptor handle that describes the memory to be sent. If the memory

descriptor has an event queue associated with it, it will be used to record events when the

message has been sent (PTL_EVENT_SEND, PTL_EVENT_ACK). If the memory descriptor has

a counting event associated with it, it may optionally be used to record the same events.

local_offset input Offset from the start of the memory descriptor.

length input Length of the memory region to be sent.

ack_req input Controls whether an acknowledgment event is requested. Acknowledgments are only sent

when they are requested by the initiating process and the memory descriptor has an event

queue or counting event and the target memory descriptor enables them.

target_id input A process identifier for the target process.

pt_index input The index in the target portal table.

match_bits input The match bits to use for message selection at the target process (only used when matching

is enabled on the network interface).

remote_offset input The offset into the target memory region (used unless the target match list entry has the

PTL_ME_MANAGE_LOCAL option set).

user_ptr input A user-specified value that is associated with each command that can generate an event.

The value does not need to be a pointer, but must fit in the space used by a pointer. This

value (along with other values) is recorded in initiator full events associated with this put

operation.

hdr_data input 64 bits of user data that can be included in the message header. This data is written to the

full event generated at the target by this operation.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

90

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

Discussion: Tying commands to a user-defined value is useful for quickly locating a user data structure

associated with the put operation. For example, an MPI implementation can set the user_ptr argument to

the value of an MPI Request. This direct association allows for processing of a put operation completion

full event by the MPI implementation without a table look up or a search for the appropriate MPI

Request.

3.15.3 PtlGet

The PtlGet() function initiates a remote read operation. There are two events associated with a get operation. When

the data is sent from the target node, a PTL_EVENT_GET event is registered on the target node if the message matched

in the priority list. The message can also match in the overflow list, which will cause a PTL_EVENT_GET event to be

registered on the target node and will later cause a PTL_EVENT_GET_OVERFLOW to be registered on the target node

when a matching entry is appended. In either case, when the data is returned from the target node, a

PTL_EVENT_REPLY event is registered on the initiator node. (Figure 3.1)

The local (initiator) offset is used to determine the starting address of the memory region and the length specifies the

length of the region in bytes. It is an error for the local offset and length parameters to specify memory outside the

memory described by the memory descriptor.

Function Prototype for PtlGet

int PtlGet(ptl_handle_md_t md_handle,

ptl_size_t local_offset,

ptl_size_t length,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void ∗user_ptr);

Arguments

md_handle input The memory descriptor handle that describes the memory into which the requested data

will be received. The memory descriptor can have an event queue associated with it to

record full events, such as when the message receive has started. If the memory descriptor

has a counting event associated with it, it may optionally be used to record the same events.

local_offset input Offset from the start of the memory descriptor.

length input Length of the memory region for the reply.

target_id input A process identifier for the target process.

pt_index input The index in the target portal table.

match_bits input The match bits to use for message selection at the target process (only used when matching

is enabled on the network interface).

remote_offset input The offset into the target match list entry (used unless the target match list entry has the

PTL_ME_MANAGE_LOCAL option set).

user_ptr input See the discussion for PtlPut().

91

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.15.4 Portals Atomics Overview

Portals defines three closely related types of atomic operations. The PtlAtomic() function is a one-way operation that

performs an atomic operation on data at the target with the data in the specified memory descriptor. The

PtlFetchAtomic() function extends PtlAtomic() to be an atomic fetch-and-update operation. The value at the target

before the operation is returned in a reply message and placed into the get memory descriptor of the initiator . Finally,

the PtlSwap() operation atomically swaps data (including compare-and-swap and swap under mask, which require an

operand argument).

The length of the operations performed by a PtlAtomic() is restricted to no more than max_atomic_size bytes. The

max_atomic_size limit also guarantees that any byte in an operation (whether an atomic operation or not) that is

smaller than max_atomic_size will only be written once in the host memory. PtlFetchAtomic() and PtlSwap()

operations can be up to max_fetch_atomic_size bytes, except for PTL_CSWAP and PTL_MSWAP operations and their

variants, which are further restricted to the length of the longest native data type.

While the length of an atomic operation is potentially multiple data items, the granularity of the atomic access is

limited to the basic datatype. That is, atomic operations from different sources may be interleaved at the level of the

datatype being accessed. Furthermore, atomic operations are only atomic with respect to other calls to the Portals

API on the same network interface (ni_handle). If a network interface returned PTL_COHERENT_ATOMICS in the

features field of PtlNIInit(), atomic operations are atomic relative to processor-initiated atomic operations, as well as

any other network interface that also returned PTL_COHERENT_ATOMICS. In addition, an implementation is only

required to support Portals atomic operations that are natively aligned to the size of the datatype, but it may choose to

provide support for unaligned accesses. If the list entry sets the PTL_IOVEC option, a single datatype may not span

multiple iovec entries. Atomicity is only guaranteed for two atomic operations using the same datatype, and

overlapping atomic operations that use different datatypes are not atomic with respect to each other. The routine

PtlAtomicSync() is provided to enable the host (or atomic operations using other datatypes) to modify memory

locations that have been previously touched by an atomic operation.

The target match list entry must be configured to respond to put operations and to get operations if a reply is desired.

The length argument at the initiator is used to specify the size of the request.

There are several events that can be associated with atomic operations. When data is sent from the initiator node, a

PTL_EVENT_SEND event is registered on the initiator node. It can be tracked in the event queue and/or in the counting

event specified in the put_md_handle. The event PTL_EVENT_ATOMIC is registered on the target node to indicate

completion of an atomic operation; and if data is returned from the target node, a PTL_EVENT_REPLY event is

registered on the initiator node in the event queue and/or the counting event specified by the get_md_handle.

Similarly, a PTL_EVENT_ACK can be registered on the initiator node in the event queue and/or counting event

specified by the put_md_handle for the atomic operations that do not return data. Note that the target match list entry

must have the PTL_ME_OP_PUT flag set and must also set the PTL_ME_OP_GET flag to enable a reply. As with other

Portals operations, the delivery of an event indicates that the data for the associated atomic operation has been

updated in application memory. This does not alleviate the requirement that all modifications of a memory location

that is accessed by atomic operations must go through the Portals API.

The three atomic functions share two new arguments introduced in Portals 4.0: an operation (ptl_op_t) and a datatype

(ptl_datatype_t), as described below.

92

Discussion: To allow upper level libraries with both system defined datatype widths and fixed width

datatypes to easily map to Portals, Portals provides fixed width integer types. The one exception is the

long double floating-point types (PTL_LONG_DOUBLE). Because of the variability in long double

encodings across systems and the lack of standard syntax for fixed width floating-point types, Portals

uses a system defined width for PTL_LONG_DOUBLE and PTL_LONG_DOUBLE_COMPLEX.

Atomic Operation Constants (ptl_op_t)

PTL_MIN Compute and return the minimum of the initiator and target value.

PTL_MAX Compute and return the maximum of the initiator and target value.

PTL_SUM Compute and return the sum of the initiator and target value.

PTL_PROD Compute and return the product of the initiator and target value.

PTL_LOR Compute and return the logical OR of the initiator and target value.

PTL_LAND Compute and return the logical AND of the initiator and target value.

PTL_BOR Compute and return the bitwise OR of the initiator and target value.

PTL_BAND Compute and return the bitwise AND of the initiator and target value.

PTL_LXOR Compute and return the logical XOR of the initiator and target value.

PTL_BXOR Compute and return the bitwise XOR of the initiator and target value.

PTL_SWAP Swap the initiator and target value and return the target value.

PTL_CSWAP A conditional swap. If the value of the operand is equal to the target

value, the initiator and target value are swapped. The target value is

always returned. This operation is limited to single data items.

PTL_CSWAP_NE A conditional swap. If the value of the operand is not equal to the target

value, the initiator and target value are swapped. The target value is

always returned. This operation is limited to single data items.

PTL_CSWAP_LE A conditional swap. If the value of the operand is less than or equal to the

target value, the initiator and target value are swapped. The target value is

always returned. This operation is limited to single data items.

PTL_CSWAP_LT A conditional swap. If the value of the operand is less than the target

value, the initiator and target value are swapped. The target value is

always returned. This operation is limited to single data items.

PTL_CSWAP_GE A conditional swap. If the value of the operand is greater than or equal to

the target value, the initiator and target value are swapped. The target

value is always returned. This operation is limited to single data items.

PTL_CSWAP_GT A conditional swap. If the value of the operand is greater than the target

value, the initiator and target value are swapped. The target value is

always returned. This operation is limited to single data items.

PTL_MSWAP A masked version of the swap operation. Update the bits of the target

value that are set to 1 in the operand using the bits in the initiator value.

Return the target value. This operation is limited to single data items.

Atomic Datatype Constants (ptl_datatype_t)

PTL_INT8_T 8-bit signed integer

93

PTL_UINT8_T 8-bit unsigned integer

PTL_INT16_T 16-bit signed integer

PTL_UINT16_T 16-bit unsigned integer

PTL_INT32_T 32-bit signed integer

PTL_UINT32_T 32-bit unsigned integer

PTL_INT64_T 64-bit signed integer

PTL_UINT64_T 64-bit unsigned integer

PTL_FLOAT 32-bit floating-point number

PTL_FLOAT_COMPLEX 32-bit floating-point complex number

PTL_DOUBLE 64-bit floating-point number

PTL_DOUBLE_COMPLEX 64-bit floating-point complex number

PTL_LONG_DOUBLE System defined long double type

PTL_LONG_DOUBLE_COMPLEX System defined long double complex type

The legal combinations of atomic operation type, datatype, and function call are shown in Table 3.4. Generally

speaking, swap operations are limited to the PtlSwap() function and bitwise operation are limited to integral types.

Table 3.4. Legal Atomic Operation, Datatype, and Function Combinations

Integral Floating-Point Complex PtlAtomic() PtlFetchAtomic() PtlSwap()

Types Types Types

PTL_MIN • • • •

PTL_MAX • • • •

PTL_SUM • • • • •

PTL_PROD • • • • •

PTL_LOR • • •

PTL_LAND • • •

PTL_BOR • • •

PTL_BAND • • •

PTL_LXOR • • •

PTL_BXOR • • •

PTL_SWAP • • • •

PTL_CSWAP • • • •

PTL_CSWAP_NE • • • •

PTL_CSWAP_LE • • •

PTL_CSWAP_LT • • •

PTL_CSWAP_GE • • •

PTL_CSWAP_GT • • •

PTL_MSWAP • •

3.15.5 PtlAtomic

The PtlAtomic() function initiates an asynchronous atomic operation. The events behave like the PtlPut() function

(see Section 3.15.2), with the exception of the target side event, which is a PTL_EVENT_ATOMIC (and

PTL_EVENT_ATOMIC_OVERFLOW) instead of a PTL_EVENT_PUT. Similarly, the arguments mirror PtlPut() with the

94

addition of a ptl_datatype_t and ptl_op_t to specify the datatype and operation being performed, respectively.

Operations performed by PtlAtomic() are constrained to be no more than max_atomic_size bytes and must be aligned

at the target to the size of ptl_datatype_t passed in the datatype argument. PtlAtomic() is not atomic relative to other

host operations, except those requested through the Portals API.

Function Prototype for PtlAtomic

int PtlAtomic(ptl_handle_md_t md_handle,

ptl_size_t local_offset,

ptl_size_t length,

ptl_ack_req_t ack_req,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void ∗user_ptr,

ptl_hdr_data_t hdr_data,

ptl_op_t operation,

ptl_datatype_t datatype);

Arguments

md_handle input The memory descriptor handle that describes the memory to be sent. If the memory

descriptor has an event queue associated with it, it will be used to record events when the

message has been sent (PTL_EVENT_SEND, PTL_EVENT_ACK). If the memory descriptor has

a counting event associated with it, it may optionally be used to record the same events.

local_offset input Offset from the start of the memory descriptor referenced by the md_handle to use for

transmitted data.

length input Length of the memory region to be sent and/or received. The length field must be less than

or equal to max_atomic_size.

ack_req input Controls whether an acknowledgment event is requested. Acknowledgments are only sent

when they are requested by the initiating process and the memory descriptor has an event

queue or counting event and the target memory descriptor enables them.

target_id input A process identifier for the target process.

pt_index input The index in the target portal table.

match_bits input The match bits to use for message selection at the target process.

remote_offset input The offset into the target memory region (used unless the target match list entry has the

PTL_ME_MANAGE_LOCAL option set).

user_ptr input See the discussion for PtlPut().

hdr_data input See the discussion for PtlPut().

operation input The operation to be performed using the initiator and target data.

datatype input The type of data being operated on at the initiator and target.

Return Codes

PTL_OK Indicates success.

95

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.15.6 PtlFetchAtomic

The PtlFetchAtomic() function extends the PtlAtomic() function to return the value from the target prior to the

operation being performed. When data is sent from the initiator node, a PTL_EVENT_SEND event is registered on the

initiator node in the event queue and/or the counting event specified by the put_md_handle. The event

PTL_EVENT_FETCH_ATOMIC (and potentially PTL_EVENT_FETCH_ATOMIC_OVERFLOW) is registered on the target node

to indicate completion of an atomic operation; and if data is returned from the target node, a PTL_EVENT_REPLY event

is registered on the initiator node in the event queue and/or counting event specified by the get_md_handle. It is an

error to use memory descriptors bound to different network interfaces in a single PtlFetchAtomic() call. The

behavior that occurs when the local_get_offset into the get_md_handle overlaps with the local_put_offset into the

put_md_handle is undefined. Operations performed by PtlFetchAtomic() are constrained to be no more than

max_fetch_atomic_size bytes and must be aligned at the target to the size of ptl_datatype_t passed in the datatype

argument. PtlFetchAtomic() is not atomic relative to other host operations, except those requested through the

Portals API.

Function Prototype for PtlFetchAtomic

int PtlFetchAtomic(ptl_handle_md_t get_md_handle,

ptl_size_t local_get_offset,

ptl_handle_md_t put_md_handle,

ptl_size_t local_put_offset,

ptl_size_t length,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void ∗user_ptr,

ptl_hdr_data_t hdr_data,

ptl_op_t operation,

ptl_datatype_t datatype);

Arguments

get_md_handle input The memory descriptor handle that describes the memory into which the result of the

operation will be placed. The memory descriptor can have an event queue associated with

it to record events, such as when the result of the operation has been returned. Similarly,

the memory descriptor can have a counting event to record these events.

local_get_offset input Offset from the start of the memory descriptor referenced by the get_md_handle to use for

received data.

put_md_handle input The memory descriptor handle that describes the memory to be sent. If the memory

descriptor has an event queue associated with it, it will be used to record events when the

message has been sent. If the memory descriptor has a counting event associated with it, it

may optionally be used to record the same events.

local_put_offset input Offset from the start of the memory descriptor referenced by the put_md_handle to use for

transmitted data.

96

length input Length of the memory region to be sent and/or received. The length field must be less than

or equal to max_atomic_size.

target_id input A process identifier for the target process.

pt_index input The index in the target portal table.

match_bits input The match bits to use for message selection at the target process.

remote_offset input The offset into the target memory region (used unless the target match list entry has the

PTL_ME_MANAGE_LOCAL option set).

user_ptr input See the discussion for PtlPut().

hdr_data input See the discussion for PtlPut().

operation input The operation to be performed using the initiator and target data.

datatype input The type of data being operated on at the initiator and target.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.15.7 PtlSwap

The PtlSwap() function provides an extra argument (the operand) beyond the PtlFetchAtomic() function. PtlSwap()

handles the PTL_SWAP, PTL_CSWAP (and variants), and PTL_MSWAP operations and is subject to the additional

restriction that PTL_CSWAP (and variants) and PTL_MSWAP operations can only be as long as a single datatype item.

Events are handled in the same way as they are for PtlFetchAtomic(), since PtlSwap() is a special case of a

PtlFetchAtomic(). Like PtlFetchAtomic(), receiving a PTL_EVENT_REPLY inherently implies that the flow control

check has passed on the target node. It is an error to use memory descriptors bound to different network interfaces in

a single PtlSwap() call. The behavior that occurs when the local_get_offset into the get_md_handle overlaps with the

local_put_offset into the put_md_handle is undefined. Operations performed by PtlSwap() are constrained to be no

more than max_fetch_atomic_size bytes and must be aligned at the target to the size of ptl_datatype_t passed in the

datatype argument. PTL_CSWAP and PTL_MSWAP operations are further restricted to one item, whose size is defined by

the size of the datatype used. PtlSwap() is not atomic relative to other host operations, except those requested

through the Portals API.

97

Function Prototype for PtlSwap

int PtlSwap(ptl_handle_md_t get_md_handle,

ptl_size_t local_get_offset,

ptl_handle_md_t put_md_handle,

ptl_size_t local_put_offset,

ptl_size_t length,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void ∗user_ptr,

ptl_hdr_data_t hdr_data,

const void ∗operand,

ptl_op_t operation,

ptl_datatype_t datatype);

Arguments

get_md_handle input The memory descriptor handle that describes the memory into which the result of the

operation will be placed. The memory descriptor can have an event queue associated with

it to record events, such as when the result of the operation has been returned. Similarly,

the memory descriptor can have a counting event to record these events.

local_get_offset input Offset from the start of the memory descriptor referenced by the get_md_handle to use for

received data.

put_md_handle input The memory descriptor handle that describes the memory to be sent. If the memory

descriptor has an event queue associated with it, it will be used to record events when the

message has been sent. If the memory descriptor has a counting event associated with it, it

may optionally be used to record the same events.

local_put_offset input Offset from the start of the memory descriptor referenced by the put_md_handle to use for

transmitted data.

length input Length of the memory region to be sent and/or received. The length field must be less than

or equal to max_atomic_size for PTL_SWAP operations and can only be as large as a single

datatype item for PTL_CSWAP and PTL_MSWAP operations, and variants of those.

target_id input A process identifier for the target process.

pt_index input The index in the target portal table.

match_bits input The match bits to use for message selection at the target process.

remote_offset input The offset into the target memory region (used unless the target match list entry has the

PTL_ME_MANAGE_LOCAL option set).

user_ptr input See the discussion for PtlPut().

hdr_data input See the discussion for PtlPut().

operand input A pointer to the data to be used for the PTL_CSWAP (and variants) and PTL_MSWAP

operations (ignored for other operations). The data pointed to is of the type specified by the

datatype argument and must be included in the message.

operation input The operation to be performed using the initiator and target data.

datatype input The type of data being operated on at the initiator and target.

98

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.15.8 PtlAtomicSync

The PtlAtomicSync() function synchronizes the atomic accesses through the Portals API with accesses by the host.

When a data item is accessed by a Portals atomic operation, modification of the same data item by the host or by an

atomic operation using a different datatype can lead to undefined behavior. When PtlAtomicSync() is called, it will

block until it is safe for the host (or other atomic operations with a different datatype) to modify the data items

touched by previous Portals atomic operations. PtlAtomicSync() is called at the target of atomic operations.

IMPLEMENTATION

NOTE 15:
Portals Atomic Synchronization

The atomicity definition for Portals allows a network interface to offload

atomic operations and to have a non-coherent cache on the network

interface. With a non-coherent cache, any access to a memory

location by an atomic operation makes it impossible to safely modify

that location on the host. PtlAtomicSync() is provided to make

modifications from the host safe again.

Function Prototype for PtlAtomicSync

int PtlAtomicSync();

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

3.16 Triggered Operations

For a variety of scenarios, it is desirable to setup a response to incoming messages. As an example, a tree based

reduction operation could be performed by having each layer of the tree issue a PtlAtomic() operation to its parent

after receiving a PtlAtomic() from all of its children. To provide this operation, triggered versions of each of the data

movement operations are provided. To create a triggered operation, a trig_ct_handle and an integer threshold are

added to the argument list. When the count (the sum of the success and failure fields) referenced by the

trig_ct_handle argument reaches or exceeds the threshold (equal to or greater), the operation proceeds at the initiator

of the operation. For example, a PtlTriggeredGet() or a PtlTriggeredAtomic() will not leave the initiator until the

threshold is reached. A triggered operation does not use the state of the buffer when the application calls the Portals

function. Instead, it uses the state of the buffer after the threshold condition is met. Pending triggered operations can

99

be canceled using PtlCTCancelTriggered().

Triggered operations are processed in order of threshold values, even if the counting event is increased by a large

amount at once (such as through a call to PtlCTInc()). If a counting event has already reached the threshold when a

triggered operation is created, that operation is immediately processed.

Triggered operations proceed in the order their trigger threshold is reached, implying ordering within the

implementation. While not required, there may be significant performance advantages to ordering calls to triggered

operations by threshold.

Discussion: The use of a trig_ct_handle and threshold enables a variety of usage models. A single

match list entry can trigger one operation (or several) by using an independent trig_ct_handle on the

match list entry. One operation can be triggered by a combination of previous events (include a

combination of initiator and target side events) by having all of the earlier operations reference a single

trig_ct_handle and using an appropriate threshold.

IMPLEMENTATION

NOTE 16:
Ordering of Triggered Operations

The semantics of triggered operations imply that (at a minimum)

operations will proceed in the order that their trigger threshold is

reached. A quality implementation will also release operations that

reach their threshold simultaneously on the same trig_ct_handle in the

order that they are issued. Users should also create triggered

operations in ascending threshold values to decrease sorting work on

implementations.

3.16.1 PtlTriggeredPut

The PtlTriggeredPut() function adds triggered operation semantics to the PtlPut() function described in

Section 3.15.2.

Function Prototype for PtlTriggeredPut

int PtlTriggeredPut(ptl_handle_md_t md_handle,

ptl_size_t local_offset,

ptl_size_t length,

ptl_ack_req_t ack_req,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void ∗user_ptr,

ptl_hdr_data_t hdr_data,

ptl_handle_ct_t trig_ct_handle,

ptl_size_t threshold);

Arguments

md_handle input See PtlPut() description in Section 3.15.2.

100

local_offset input See PtlPut() description in Section 3.15.2.

length input See PtlPut() description in Section 3.15.2.

ack_req input See PtlPut() description in Section 3.15.2.

target_id input See PtlPut() description in Section 3.15.2.

pt_index input See PtlPut() description in Section 3.15.2.

match_bits input See PtlPut() description in Section 3.15.2.

remote_offset input See PtlPut() description in Section 3.15.2.

user_ptr input See PtlPut() description in Section 3.15.2.

hdr_data input See PtlPut() description in Section 3.15.2.

trig_ct_handle input Handle used for triggering the operation.

threshold input Threshold at which the operation triggers.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.16.2 PtlTriggeredGet

The PtlTriggeredGet() function adds triggered operation semantics to the PtlGet() function described in

Section 3.15.3.

Function Prototype for PtlTriggeredGet

int PtlTriggeredGet(ptl_handle_md_t md_handle,

ptl_size_t local_offset,

ptl_size_t length,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

void ∗user_ptr,

ptl_size_t remote_offset,

ptl_handle_ct_t ct_handle,

ptl_size_t threshold);

Arguments

md_handle input See PtlGet() description in Section 3.15.3.

target_id input See PtlGet() description in Section 3.15.3.

pt_index input See PtlGet() description in Section 3.15.3.

match_bits input See PtlGet() description in Section 3.15.3.

101

user_ptr input See PtlGet() description in Section 3.15.3.

remote_offset input See PtlGet() description in Section 3.15.3.

local_offset input See PtlGet() description in Section 3.15.3.

length input See PtlGet() description in Section 3.15.3.

trig_ct_handle input Handle used for triggering the operation.

threshold input Threshold at which the operation triggers.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.16.3 PtlTriggeredAtomic

The PtlTriggeredAtomic() function adds triggered operation semantics to the PtlAtomic() function described in

Section 3.15.5. When combined with triggered counting increments (PtlTriggeredCTInc()) and sets

(PtlTriggeredCTSet()), triggered atomic operations enable an offloaded, non-blocking implementation of most

collective operations.

Function Prototype for PtlTriggeredAtomic

int PtlTriggeredAtomic(ptl_handle_md_t md_handle,

ptl_size_t local_offset,

ptl_size_t length,

ptl_ack_req_t ack_req,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void ∗user_ptr,

ptl_hdr_data_t hdr_data,

ptl_op_t operation,

ptl_datatype_t datatype,

ptl_handle_ct_t trig_ct_handle,

ptl_size_t threshold);

Arguments

md_handle input See PtlAtomic() description in Section 3.15.5.

local_offset input See PtlAtomic() description in Section 3.15.5.

length input See PtlAtomic() description in Section 3.15.5.

ack_req input See PtlAtomic() description in Section 3.15.5.

102

target_id input See PtlAtomic() description in Section 3.15.5.

pt_index input See PtlAtomic() description in Section 3.15.5.

match_bits input See PtlAtomic() description in Section 3.15.5.

remote_offset input See PtlAtomic() description in Section 3.15.5.

user_ptr input See PtlAtomic() description in Section 3.15.5.

hdr_data input See PtlAtomic() description in Section 3.15.5.

operation input See PtlAtomic() description in Section 3.15.5.

datatype input See PtlAtomic() description in Section 3.15.5.

trig_ct_handle input Handle used for triggering the operation.

threshold input Threshold at which the operation triggers.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.16.4 PtlTriggeredFetchAtomic

The PtlTriggeredFetchAtomic() function adds triggered operation semantics to the PtlFetchAtomic() function

described in Section 3.15.6.

Function Prototype for PtlTriggeredFetchAtomic

int PtlTriggeredFetchAtomic(ptl_handle_md_t get_md_handle,

ptl_size_t local_get_offset,

ptl_handle_md_t put_md_handle,

ptl_size_t local_put_offset,

ptl_size_t length,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void ∗user_ptr,

ptl_hdr_data_t hdr_data,

ptl_op_t operation,

ptl_datatype_t datatype,

ptl_handle_ct_t trig_ct_handle,

ptl_size_t threshold);

Arguments

get_md_handle input See PtlFetchAtomic() description in Section 3.15.6.

103

local_get_offset input See PtlFetchAtomic() description in Section 3.15.6.

put_md_handle input See PtlFetchAtomic() description in Section 3.15.6.

local_put_offset input See PtlFetchAtomic() description in Section 3.15.6.

length input See PtlFetchAtomic() description in Section 3.15.6.

target_id input See PtlFetchAtomic() description in Section 3.15.6.

pt_index input See PtlFetchAtomic() description in Section 3.15.6.

match_bits input See PtlFetchAtomic() description in Section 3.15.6.

remote_offset input See PtlFetchAtomic() description in Section 3.15.6.

user_ptr input See PtlFetchAtomic() description in Section 3.15.6.

hdr_data input See PtlFetchAtomic() description in Section 3.15.6.

operation input See PtlFetchAtomic() description in Section 3.15.6.

datatype input See PtlFetchAtomic() description in Section 3.15.6.

trig_ct_handle input Handle used for triggering the operation.

threshold input Threshold at which the operation triggers.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.16.5 PtlTriggeredSwap

The PtlTriggeredSwap() function adds triggered operation semantics to the PtlSwap() function described in

Section 3.15.7.

104

Function Prototype for PtlTriggeredSwap

int PtlTriggeredSwap(ptl_handle_md_t get_md_handle,

ptl_size_t local_get_offset,

ptl_handle_md_t put_md_handle,

ptl_size_t local_put_offset,

ptl_size_t length,

ptl_process_t target_id,

ptl_pt_index_t pt_index,

ptl_match_bits_t match_bits,

ptl_size_t remote_offset,

void ∗user_ptr,

ptl_hdr_data_t hdr_data,

const void ∗operand,

ptl_op_t operation,

ptl_datatype_t datatype,

ptl_handle_ct_t trig_ct_handle,

ptl_size_t threshold);

Arguments

get_md_handle input See PtlSwap() description in Section 3.15.7.

local_get_offset input See PtlSwap() description in Section 3.15.7.

put_md_handle input See PtlSwap() description in Section 3.15.7.

local_put_offset input See PtlSwap() description in Section 3.15.7.

length input See PtlSwap() description in Section 3.15.7.

target_id input See PtlSwap() description in Section 3.15.7.

pt_index input See PtlSwap() description in Section 3.15.7.

match_bits input See PtlSwap() description in Section 3.15.7.

remote_offset input See PtlSwap() description in Section 3.15.7.

user_ptr input See PtlSwap() description in Section 3.15.7.

hdr_data input See PtlSwap() description in Section 3.15.7.

operand input See PtlSwap() description in Section 3.15.7.

operation input See PtlSwap() description in Section 3.15.7.

datatype input See PtlSwap() description in Section 3.15.7.

trig_ct_handle input Handle used for triggering the operation.

threshold input Threshold at which the operation triggers.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

105

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.16.6 PtlTriggeredCTInc

The triggered counting event increment extends the counting event increment (PtlCTInc()) with the triggered

operation semantics. It is a convenient mechanism to provide chaining of dependencies between counting events.

This allows a relatively arbitrary ordering of operations. For example, a PtlTriggeredPut() and a

PtlTriggeredCTInc() could be dependent on ct_handle A with the same threshold. If the PtlTriggeredCTInc() is set to

increment ct_handle B and a second PtlTriggeredPut() is dependent on ct_handle B, the second PtlTriggeredPut()

will occur after the first.

Function Prototype for PtlTriggeredCTInc

int PtlTriggeredCTInc(ptl_handle_ct_t ct_handle,

ptl_ct_event_t increment,

ptl_handle_ct_t trig_ct_handle,

ptl_size_t threshold);

Arguments

ct_handle input See PtlCTInc() description in Section 3.14.9.

increment input See PtlCTInc() description in Section 3.14.9.

trig_ct_handle input Handle used for triggering the operation.

threshold input Threshold at which the operation triggers.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.16.7 PtlTriggeredCTSet

The triggered counting event increment extends the counting event set (PtlCTSet()) with the triggered operation

semantics. It is a convenient mechanism to provide reinitialization of counting events between invocations of an

algorithm.

106

Function Prototype for PtlTriggeredCTSet

int PtlTriggeredCTSet(ptl_handle_ct_t ct_handle,

ptl_ct_event_t new_ct,

ptl_handle_ct_t trig_ct_handle,

ptl_size_t threshold);

Arguments

ct_handle input See PtlCTSet() description in Section 3.14.8.

new_ct input See PtlCTSet() description in Section 3.14.8.

trig_ct_handle input Handle used for triggering the operation.

threshold input Threshold at which the operation triggers.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.17 Deferred Communication Operations

Frequently, upper layer protocols and applications generate a stream of operations with loose synchronization

requirements between operations. For example, an MPI implementation may need to start a large number of

operations to implement the fan-out portion of a collective operation. The portals deferred communication operations

provide a mechanism for allowing the Portals implementation to optimize for these situations.

3.17.1 PtlStartBundle

The PtlStartBundle() function is used by the application to indicate to the implementation that a group of

communication operations is about to start. PtlStartBundle() takes an ni_handle as an argument and only impacts

operations on that ni_handle. PtlStartBundle() can be called multiple times, and each call to PtlStartBundle()

increments a reference count and must be matched by a call to PtlEndBundle(). After a call to PtlStartBundle(), the

implementation may begin deferring communication operations until a call to PtlEndBundle().

Function Prototype for PtlStartBundle

int PtlStartBundle(ptl_handle_ni_t ni_handle);

107

Arguments

ni_handle input An interface handle to start bundling operations.

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

Discussion: Layered libraries and heavily nested PtlStartBundle() calls can yield unexpected results.

The PtlStartBundle() and PtlEndBundle() interface was designed for use in short periods of high

activity (e.g. during the setup of a collective operation or during an inner loop for PGAS languages). The

interval between PtlStartBundle() and the corresponding PtlEndBundle() should be kept short.

IMPLEMENTATION

NOTE 17:
Purpose of Bundling

The PtlStartBundle() and PtlEndBundle() interface was designed to

allow the implementation to avoid unnecessary sfence()/memory

barrier operations during periods that the application expects high

message rate. A quality implementation will attempt to minimize

latency while maximizing message rate. For example, an

implementation that requires writes into “write-combining” space may

require sfence() operations with every message to have relatively

deterministic latency. Between a PtlStartBundle() and

PtlEndBundle(), the implementation might simply omit the sfence()

operations.

3.17.2 PtlEndBundle

The PtlEndBundle() function is used by the application to indicate to the implementation that a group of

communication operations has ended. PtlEndBundle() takes an ni_handle as an argument and only impacts

operations on that ni_handle. PtlEndBundle() must be called once for each PtlStartBundle() call. At each call to

PtlEndBundle(), the implementation must initiate all communication operations that have been deferred; however,

the implementation is not required to cease bundling future operations until the reference count reaches zero.

Function Prototype for PtlEndBundle

int PtlEndBundle(ptl_handle_ni_t ni_handle);

Arguments

ni_handle input An interface handle to end bundling operations.

108

Return Codes

PTL_OK Indicates success.

PTL_NO_INIT Indicates that the Portals API has not been successfully initialized.

PTL_ARG_INVALID Indicates that an invalid argument was passed. The definition of which arguments are

checked is implementation dependent.

3.18 Operations on Handles

Handles are opaque data types. The only operation defined on them by the Portals API is a comparison function.

3.18.1 PtlHandleIsEqual

The PtlHandleIsEqual() function compares two handles to determine if they represent the same object.

PtlHandleIsEqual() does not check whether the two handles are valid, but only whether they are equal.

Function Prototype for PtlHandleIsEqual

int PtlHandleIsEqual(ptl_handle_any_t handle1,

ptl_handle_any_t handle2);

Arguments

handle1 input An object handle. May be the constant value PTL_INVALID_HANDLE, which represents the

value of an invalid handle.

handle2 input An object handle. May be the constant value PTL_INVALID_HANDLE, which represents the

value of an invalid handle.

Return Codes

zero Indicates that the two handles are not equivalent.

non-zero Indicates that the two handles are equivalent.

Discussion: PtlHandleIsEqual() returns a value suitable for direct evaluation in a conditional

expression. While different from all other Portals functions and previous Portals versions, it does greatly

simplify usage of PtlHandleIsEqual().

3.19 Summary

We conclude this chapter by summarizing the names introduced by the Portals API. We start with the data types

introduced by the API. This is followed by a summary of the functions defined by the API which is followed by a

summary of the function return codes. Finally, we conclude with a summary of the other constant values defined by

109

the API.

Table 3.5 presents a summary of the types defined by the Portals API. The first column in this table gives the type

name, the second column gives a brief description of the type, the third column identifies the section where the type is

defined, and the fourth column lists the functions that have arguments of this type and structures with members of this

type.

Table 3.5. Portals Data Types: Data Types Defined by the Portals API.

Name Meaning Definition Functions/Data Structures

ptl_ack_req_t acknowledgment request types 3.15.1 PtlAtomic(), PtlPut(),

PtlTriggeredAtomic(),

PtlTriggeredPut()

ptl_ct_event_t counting event structure 3.14.1 PtlCTGet(), PtlCTInc(), PtlCTPoll(),

PtlCTSet(), PtlTriggeredCTInc(),

PtlTriggeredCTSet(), PtlCTWait()

ptl_datatype_t datatype for atomic operation 3.15.4 PtlAtomic(), PtlFetchAtomic(),

PtlSwap(), PtlTriggeredAtomic(),

PtlTriggeredFetchAtomic(),

PtlTriggeredSwap(), ptl_event_t

ptl_event_kind_t event kind 3.13.1 ptl_event_t

ptl_event_t event queue entry 3.13.4 PtlEQGet(), PtlEQWait(), PtlEQPoll()

ptl_handle_any_t any object handles 3.3.2 PtlHandleIsEqual(), PtlNIHandle()

ptl_handle_ct_t counting event handles 3.3.2 PtlCTAlloc(), PtlCTCancelTriggered(),

PtlCTFree(), PtlCTGet(), PtlCTInc(),

PtlCTPoll(), PtlCTSet(), PtlCTWait(),

PtlTriggeredAtomic(),

PtlTriggeredCTInc(),

PtlTriggeredCTSet(),

PtlTriggeredFetchAtomic(),

PtlTriggeredGet(), PtlTriggeredPut(),

PtlTriggeredSwap(), ptl_le_t, ptl_md_t,

ptl_me_t

ptl_handle_eq_t event queue handles 3.3.2 PtlEQAlloc(), PtlEQFree(), PtlEQGet(),

PtlEQPoll(), PtlEQWait(), PtlPTAlloc(),

ptl_md_t

ptl_handle_le_t list entry handles 3.3.2 PtlLEAppend(), PtlLEUnlink()

ptl_handle_md_t memory descriptor handles 3.3.2 PtlAtomic(), PtlFetchAtomic(), PtlGet(),

PtlMDBind(), PtlMDRelease(), PtlPut(),

PtlSwap(), PtlTriggeredAtomic(),

PtlTriggeredFetchAtomic(),

PtlTriggeredGet(), PtlTriggeredPut(),

PtlTriggeredSwap()

ptl_handle_me_t match list entry handles 3.3.2 PtlMEAppend(), PtlMEUnlink()

continued on next page

110

continued from previous page

Name Meaning Definition Functions/Data Structures

ptl_handle_ni_t network interface handles 3.3.2 PtlCTAlloc(), PtlEQAlloc(),

PtlEndBundle(), PtlGetId(),

PtlGetMap(), PtlGetPhysId(),

PtlGetUid(), PtlLEAppend(),

PtlLESearch(), PtlMDBind(),

PtlMEAppend(), PtlMESearch(),

PtlNIFini(), PtlNIHandle(), PtlNIInit(),

PtlNIStatus(), PtlPTAlloc(),

PtlPTDisable(), PtlPTEnable(),

PtlPTFree(), PtlSetMap(),

PtlStartBundle()

ptl_hdr_data_t user header data 3.15.2 PtlAtomic(), PtlFetchAtomic(), PtlPut(),

PtlSwap(), PtlTriggeredAtomic(),

PtlTriggeredFetchAtomic(),

PtlTriggeredPut(), PtlTriggeredSwap(),

ptl_event_t

ptl_interface_t network interface identifiers 3.3.5 PtlNIInit()

ptl_iovec_t scatter/gather buffer descriptors 3.10.2

ptl_le_t list entries 3.11.1 PtlLEAppend(), PtlLESearch()

ptl_list_t type of list attached to a portal

table entry

3.12.2 PtlLEAppend(), PtlLEAppend(),

ptl_event_t

ptl_match_bits_t match (and ignore) bits 3.3.4 PtlAtomic(), PtlFetchAtomic(), PtlGet(),

PtlPut(), PtlSwap(),

PtlTriggeredAtomic(),

PtlTriggeredFetchAtomic(),

PtlTriggeredGet(), PtlTriggeredPut(),

PtlTriggeredSwap(), ptl_event_t,

ptl_me_t

ptl_md_t memory descriptors 3.10.1 PtlMDBind()

ptl_me_t match list entries 3.12.1 PtlMEAppend(), PtlMESearch()

ptl_ni_fail_t network interface specific failures 3.13.3 ptl_event_t

ptl_ni_limits_t implementation dependent limits 3.6.1 PtlNIInit()

ptl_nid_t node identifiers 3.3.6 ptl_process_t

ptl_op_t atomic operation type 3.15.4 PtlAtomic(), PtlFetchAtomic(),

PtlSwap(), PtlTriggeredAtomic(),

PtlTriggeredFetchAtomic(),

PtlTriggeredSwap(), ptl_event_t

ptl_pid_t process identifier 3.3.6 PtlNIInit(), ptl_process_t

ptl_process_t process identifiers 3.9.1 PtlAtomic(), PtlFetchAtomic(), PtlGet(),

PtlGetId(), PtlGetMap(), PtlGetPhysId(),

PtlPut(), PtlSetMap(), PtlSwap(),

PtlTriggeredAtomic(),

PtlTriggeredFetchAtomic(),

PtlTriggeredGet(), PtlTriggeredPut(),

PtlTriggeredSwap(), ptl_event_t,

ptl_me_t

continued on next page

111

continued from previous page

Name Meaning Definition Functions/Data Structures

ptl_pt_index_t portal table indexes 3.3.3 PtlAtomic(), PtlFetchAtomic(), PtlGet(),

PtlLEAppend(), PtlLESearch(),

PtlMEAppend(), PtlMESearch(),

PtlPTAlloc(), PtlPTDisable(),

PtlPTEnable(), PtlPTFree(), PtlPut(),

PtlSwap(), PtlTriggeredAtomic(),

PtlTriggeredFetchAtomic(),

PtlTriggeredGet(), PtlTriggeredPut(),

PtlTriggeredSwap(), ptl_event_t

ptl_rank_t rank within a group of

communicating processes

3.3.6 ptl_process_t

ptl_search_op_t operation performed by list

search

3.12.4 PtlLESearch(), PtlMESearch()

ptl_size_t sizes 3.3.1 PtlAtomic(), PtlCTPoll(), PtlCTWait(),

PtlEQAlloc(), PtlFetchAtomic(),

PtlGet(), PtlGetMap(), PtlPut(),

PtlSetMap(), PtlSwap(),

PtlTriggeredAtomic(),

PtlTriggeredCTInc(),

PtlTriggeredCTSet(),

PtlTriggeredFetchAtomic(),

PtlTriggeredGet(), PtlTriggeredPut(),

PtlTriggeredSwap(), ptl_ct_event_t,

ptl_event_t, ptl_iovec_t, ptl_le_t, ptl_md_t,

ptl_me_t, ptl_ni_limits_t

ptl_sr_index_t status register indexes 3.3.7 PtlNIStatus()

ptl_sr_value_t status register values 3.3.7 PtlNIStatus()

ptl_time_t time in milliseconds 3.13.9 PtlCTPoll(), PtlEQPoll()

ptl_uid_t user identifier 3.3.6 PtlGetUid(), ptl_event_t, ptl_le_t,

ptl_me_t

Table 3.6 presents a summary of the functions defined by the Portals API. The first column in this table gives the

name for the function, the second column gives a brief description of the operation implemented by the function, and

the third column identifies the section where the function is defined.

Table 3.6. Portals Functions: Functions Defined by the Portals API.

Name Meaning Definition

PtlAtomic() perform an atomic operation 3.15.5

PtlAtomicSync() synchronize results of atomic operations with the host 3.15.8

PtlCTAlloc() create a counting event 3.14.2

PtlCTCancelTriggered() cancel pending triggered operations 3.14.4

PtlCTFree() free a counting event 3.14.3

PtlCTGet() get the current value of a counting event 3.14.5

PtlCTInc() increment a counting event by a certain value 3.14.9

PtlCTPoll() wait for an array of counting events to reach certain values 3.14.7

PtlCTSet() set a counting event to a certain value 3.14.8

PtlCTWait() wait for a counting event to reach a certain value 3.14.6

PtlEndBundle() end a communications bundle 3.17.2

PtlEQAlloc() create an event queue 3.13.5

PtlEQFree() release the resources for an event queue 3.13.6

continued on next page

112

continued from previous page

Name Meaning Definition

PtlEQGet() get the next event from an event queue 3.13.7

PtlEQPoll() poll for a new event on multiple event queues 3.13.9

PtlEQWait() wait for a new event in an event queue 3.13.8

PtlFetchAtomic() perform an fetch and atomic operation 3.15.6

PtlFini() shut down the Portals API 3.5.2

PtlGet() perform a get operation 3.15.3

PtlGetId() get the identifier for the current process 3.9.2

PtlGetMap() retrieve a rank to physical mapping 3.6.7

PtlGetPhysId() get the physical identifier for the current process 3.9.3

PtlGetUid() get the network interface specific user identifier 3.8.1

PtlHandleIsEqual() compares two handles to determine if they represent the same object 3.18.1

PtlInit() initialize the Portals API 3.5.1

PtlLEAppend() create a list entry and append it to a portal table 3.11.2

PtlLESearch() search an unexpected header 3.11.4

PtlLEUnlink() remove a list entry from a list and release its resources 3.11.3

PtlMDBind() create a free-floating memory descriptor 3.10.3

PtlMDRelease() release resources associated with a memory descriptor 3.10.4

PtlMEAppend() create a match list entry and append it to a portal table 3.12.2

PtlMESearch() search an unexpected header 3.12.4

PtlMEUnlink() remove a match list entry from a list and release its resources 3.12.3

PtlNIFini() shut down a network interface 3.6.3

PtlNIHandle() get the network interface handle for an object 3.6.5

PtlNIInit() initialize a network interface 3.6.2

PtlNIStatus() read a network interface status register 3.6.4

PtlPTAlloc() allocate a free portal table entry 3.7.1

PtlPTFree() free a portal table entry 3.7.2

PtlPTDisable() disable a portal table entry 3.7.3

PtlPTEnable() enable a portal table entry that has been disabled 3.7.4

PtlPut() perform a put operation 3.15.2

PtlSetMap() initialize a rank to physical mapping 3.6.6

PtlStartBundle() start a communications bundle 3.17.1

PtlSwap() perform a swap operation 3.15.7

PtlTriggeredAtomic() perform a triggered atomic operation 3.16.3

PtlTriggeredCTInc() a triggered increment of a counting event by a certain value 3.16.6

PtlTriggeredCTSet() a triggered set of a counting event by a certain value 3.16.7

PtlTriggeredFetchAtomic() perform a triggered fetch and atomic operation 3.16.4

PtlTriggeredGet() perform a triggered get operation 3.16.2

PtlTriggeredPut() perform a triggered put operation 3.16.1

PtlTriggeredSwap() perform a triggered swap operation 3.16.5

Table 3.7 summarizes the return codes used by functions defined by the Portals API. The first column of this table

gives the symbolic name for the constant, the second column gives a brief description of the value, and the third

column identifies the functions that can return this value.

Table 3.7. Portals Return Codes: Function Return Codes for the Portals API.

Name Meaning Functions

PTL_ARG_INVALID invalid argument passed all, except PtlAtomicSync(), PtlFini(),

PtlHandleIsEqual(), PtlInit()

PTL_CT_NONE_REACHED timeout reached before any

counting event reached the test

PtlCTPoll()

continued on next page

113

continued from previous page

Name Meaning Functions

PTL_EQ_DROPPED at least one event has been dropped PtlEQGet(), PtlEQPoll(), PtlEQWait()

PTL_EQ_EMPTY no events available in an event

queue

PtlEQGet(), PtlEQPoll()

PTL_FAIL error during initialization PtlInit()

PTL_IGNORED Logical map set failed PtlSetMap()

PTL_IN_USE MD, ME, or LE has pending

operations

PtlLEUnlink(), PtlMEUnlink()

PTL_INTERRUPTED wait/get operation was interrupted PtlCTPoll(), PtlCTWait(), PtlEQPoll(),

PtlEQWait()

PTL_LIST_TOO_LONG list too long PtlLEAppend(), PtlMEAppend()

PTL_NO_INIT uninitialized API all, except PtlFini(), PtlHandleIsEqual(),

PtlInit()

PTL_NO_SPACE insufficient memory PtlCTAlloc(), PtlEQAlloc(),

PtlGetMap(), PtlLEAppend(),

PtlMDBind(), PtlMEAppend(),

PtlNIInit(), PtlSetMap()

PTL_OK success all, except PtlFini(), PtlHandleIsEqual()

PTL_PID_IN_USE pid is in use PtlNIInit()

PTL_PT_EQ_NEEDED EQ must be attached when flow

control is enabled

PtlPTAlloc()

PTL_PT_FULL portal table is full PtlPTAlloc()

PTL_PT_IN_USE portal table index is busy PtlPTAlloc(), PtlPTFree()

Table 3.8 summarizes the remaining constant values introduced by the Portals API. The first column in this table

presents the symbolic name for the constant, the second column gives a brief description of the value, the third

column identifies the type for the value, and the fourth column identifies the section in which the constant is

introduced or described.

Table 3.8. Portals Constants: Other Constants Defined by the Portals API.

Name Meaning Base Type Definition

PTL_ACK_REQ request an acknowledgment ptl_ack_req_t 3.15

PTL_BAND Compute and return the

bitwise AND of the

initiator and target value

ptl_op_t 3.15.4

PTL_BOR Compute and return the

bitwise OR of the initiator

and target value

ptl_op_t 3.15.4

PTL_BXOR Compute and return the

bitwise XOR of the

initiator and target value

ptl_op_t 3.15.4

PTL_COHERENT_ATOMICS a flag to indicate that the

implementation provides

atomic operations which

are coherent with processor

atomic operations

int 3.15.4

PTL_CSWAP Conditional swap if target

and operand equal

ptl_op_t 3.15.4

PTL_CSWAP_GE Conditional swap if the

operand is greater than or

equal to the target

ptl_op_t 3.15.4

continued on next page

114

continued from previous page

Name Meaning Base Type Definition

PTL_CSWAP_GT Conditional swap if the

operand is greater than the

target

ptl_op_t 3.15.4

PTL_CSWAP_LE Conditional swap if the

operand is less than or

equal to the target

ptl_op_t 3.15.4

PTL_CSWAP_LT Conditional swap if the

operand is less than the

target

ptl_op_t 3.15.4

PTL_CSWAP_NE Conditional swap if the

operand and target are not

equal

ptl_op_t 3.15.4

PTL_CT_ACK_REQ request a counting

acknowledgment

ptl_ack_req_t 3.15

PTL_CT_NONE a NULL count handle ptl_handle_ct_t 3.3.2

PTL_DOUBLE 64-bit floating-point

number

ptl_op_t 3.15.4

PTL_DOUBLE_COMPLEX 64-bit floating-point

complex number

ptl_op_t 3.15.4

PTL_EQ_NONE a NULL event queue handle ptl_handle_eq_t 3.3.2

PTL_EVENT_ACK acknowledgment event ptl_event_kind_t 3.13.1

PTL_EVENT_ATOMIC atomic event ptl_event_kind_t 3.13.1

PTL_EVENT_ATOMIC_OVERFLOW atomic overflow event ptl_event_kind_t 3.13.1

PTL_EVENT_AUTO_FREE automatic free event ptl_event_kind_t 3.13.1

PTL_EVENT_AUTO_UNLINK automatic unlink event ptl_event_kind_t 3.13.1

PTL_EVENT_FETCH_ATOMIC fetching atomic event ptl_event_kind_t 3.13.1

PTL_EVENT_FETCH_ATOMIC_-

OVERFLOW

fetching atomic overflow

event

ptl_event_kind_t 3.13.1

PTL_EVENT_GET get event ptl_event_kind_t 3.13.1

PTL_EVENT_GET_OVERFLOW get overflow event ptl_event_kind_t 3.13.1

PTL_EVENT_LINK event generated when a list

entry links ptl_event_kind_t

3.13.1

PTL_EVENT_PT_DISABLED portal table entry disabled

event

ptl_event_kind_t 3.13.1

PTL_EVENT_PUT put event ptl_event_kind_t 3.13.1

PTL_EVENT_PUT_OVERFLOW put overflow event ptl_event_kind_t 3.13.1

PTL_EVENT_REPLY reply event ptl_event_kind_t 3.13.1

PTL_EVENT_SEARCH search event ptl_event_kind_t 3.13.1

PTL_EVENT_SEND send event ptl_event_kind_t 3.13.1

PTL_FLOAT 32-bit floating-point

number

ptl_op_t 3.15.4

PTL_FLOAT_COMPLEX 32-bit floating-point

complex number

ptl_op_t 3.15.4

PTL_IFACE_DEFAULT default interface ptl_interface_t 3.3.5

PTL_INT16_T 16-bit signed integer ptl_op_t 3.15.4

PTL_INT32_T 32-bit signed integer ptl_op_t 3.15.4

PTL_INT64_T 64-bit signed integer ptl_op_t 3.15.4

PTL_INT8_T 8-bit signed integer ptl_op_t 3.15.4

PTL_INVALID_HANDLE invalid handle ptl_handle_any_t 3.3.2

continued on next page

115

continued from previous page

Name Meaning Base Type Definition

PTL_IOVEC a flag to enable

scatter/gather memory

descriptors

int 3.12.1

PTL_LAND Compute and return the

logical AND of the initiator

and target

ptl_op_t 3.15.4

PTL_LE_ACK_DISABLE a flag to disable

acknowledgments

int 3.11.1

PTL_LE_EVENT_COMM_DISABLE a flag to disable events

associated with new

communications

int 3.11.1

PTL_LE_EVENT_CT_BYTES a flag to count bytes instead

of operations

int 3.11.1

PTL_LE_EVENT_CT_COMM a flag to count

communication events

int 3.11.1

PTL_LE_EVENT_CT_OVERFLOW a flag to count overflow

events

int 3.11.1

PTL_LE_EVENT_FLOWCTRL_DISABLE a flag to disable events

associated with flow

control

int 3.11.1

PTL_LE_EVENT_LINK_DISABLE a flag to disable link events int 3.11.1

PTL_LE_EVENT_OVER_DISABLE a flag to disable overflow

events

int 3.11.1

PTL_LE_EVENT_SUCCESS_DISABLE a flag to disable events that

indicate success

int 3.11.1

PTL_LE_EVENT_UNLINK_DISABLE a flag to disable unlink

events

int 3.11.1

PTL_LE_IS_ACCESSIBLE a flag to indicate the entire

LE is accessible

int 3.11.1

PTL_LE_OP_GET a flag to enable get

operations

int 3.11.1

PTL_LE_OP_PUT a flag to enable put

operations

int 3.11.1

PTL_LE_UNEXPECTED_HDR_DISABLE a flag to disable adding

headers to the unexpected

headers list

int 3.11.1

PTL_LE_USE_ONCE a flag to indicate that the

list entry will only be used

once

int 3.11.1

PTL_LONG_DOUBLE System defined long double

type

ptl_op_t 3.15.4

PTL_LONG_DOUBLE_COMPLEX System defined long double

complex type

ptl_op_t 3.15.4

PTL_LOR Compute and return the

logical OR of the initiator

and target

ptl_op_t 3.15.4

PTL_LXOR Compute and return the

logical XOR of the initiator

and target

ptl_op_t 3.15.4

continued on next page

116

continued from previous page

Name Meaning Base Type Definition

PTL_MAX Compute and return the

maximum of the initiator

and target

ptl_op_t 3.15.4

PTL_MD_EVENT_CT_ACK a flag to count

acknowledgment events

int 3.10.1

PTL_MD_EVENT_CT_BYTES a flag to count bytes instead

of operations

int 3.10.1

PTL_MD_EVENT_CT_REPLY a flag to count reply events int 3.10.1

PTL_MD_EVENT_CT_SEND a flag to count send events int 3.10.1

PTL_MD_EVENT_SEND_DISABLE a flag to disable send events int 3.10.1

PTL_MD_EVENT_SUCCESS_DISABLE a flag to disable events that

indicate success

int 3.10.1

PTL_MD_UNORDERED a flag to indicate that

messages from this MD do

not need to be ordered

int 3.10.1

PTL_MD_VOLATILE a flag to indicate that the

application will modify the

put buffer immediately

upon operation return,

before receiving a send

event.

int 3.10.1

PTL_ME_ACK_DISABLE a flag to disable

acknowledgments

int 3.12.1

PTL_ME_EVENT_COMM_DISABLE a flag to disable events

associated with new

communications

int 3.12.1

PTL_ME_EVENT_CT_BYTES a flag to count bytes instead

of operations

int 3.12.1

PTL_ME_EVENT_CT_COMM a flag to count

communication events

int 3.12.1

PTL_ME_EVENT_CT_OVERFLOW a flag to count overflow

events

int 3.12.1

PTL_ME_EVENT_FLOWCTRL_DISABLE a flag to disable events

associated with flow

control

int 3.12.1

PTL_ME_EVENT_LINK_DISABLE a flag to disable link events int 3.12.1

PTL_ME_EVENT_OVER_DISABLE a flag to disable overflow

events

int 3.12.1

PTL_ME_EVENT_SUCCESS_DISABLE a flag to disable events that

indicate success

int 3.12.1

PTL_ME_EVENT_UNLINK_DISABLE a flag to disable unlink

events

int 3.12.1

PTL_ME_IS_ACCESSIBLE a flag to indicate the entire

ME is accessible

int 3.12.1

PTL_ME_MANAGE_LOCAL a flag to enable the use of

local offsets

int 3.12.1

PTL_ME_MAY_ALIGN a flag to indicate that the

implementation may align

an incoming message to a

natural boundary to

enhance performance

int 3.12.1

continued on next page

117

continued from previous page

Name Meaning Base Type Definition

PTL_ME_NO_TRUNCATE a flag to disable truncation

of a request

int 3.12.1

PTL_ME_OP_GET a flag to enable get

operations

int 3.12.1

PTL_ME_OP_PUT a flag to enable put

operations

int 3.12.1

PTL_ME_UNEXPECTED_HDR_DISABLE a flag to disable adding

headers to the unexpected

headers list

int 3.12.1

PTL_ME_USE_ONCE a flag to indicate that the

match list entry will only

be used once

int 3.12.1

PTL_MIN Compute and return the

minimum of the initiator

and target

ptl_op_t 3.15.4

PTL_MSWAP A masked version of the

swap operation

ptl_op_t 3.15.4

PTL_NI_DROPPED message was dropped ptl_ni_fail_t 3.13.3

PTL_NI_LOGICAL a flag to indicate that the

network interface must

provide logical addresses

for network endpoints

int 3.6.2

PTL_NI_MATCHING a flag to indicate that the

network interface must

provide matching portals

addressing

int 3.6.2

PTL_NI_NO_MATCH search did not find an entry

in the unexpected list

ptl_ni_fail_t 3.13

PTL_NI_NO_MATCHING a flag to indicate that the

network interface must

provide non-matching

portals addressing

int 3.6.2

PTL_NI_OK successful event ptl_ni_fail_t 3.13.3

PTL_NI_OP_VIOLATION message encountered an

operation violation

ptl_ni_fail_t 3.13.3

PTL_NI_PERM_VIOLATION message encountered a

permissions violation

ptl_ni_fail_t 3.13.3

PTL_NI_PHYSICAL a flag to indicate that the

network interface must

provide physical addresses

for network endpoints

int 3.6.2

PTL_NI_PT_DISABLED message encountered a

disabled portal table entry

ptl_ni_fail_t 3.13.3

PTL_NI_SEGV message attempted to

access inaccessible

memory

ptl_ni_fail_t 3.13.3

PTL_NI_UNDELIVERABLE message could not be

delivered

ptl_ni_fail_t 3.13.3

PTL_NID_ANY wildcard for node identifier

fields

ptl_nid_t 3.3.6

PTL_NO_ACK_REQ request no acknowledgment ptl_ack_req_t 3.15

continued on next page

118

continued from previous page

Name Meaning Base Type Definition

PTL_OC_ACK_REQ request an operation

completed

acknowledgment

ptl_ack_req_t 3.15

PTL_OVERFLOW_LIST specifies the overflow list

attached to a portal table

entry

int 3.12.2

PTL_PID_ANY wildcard for process

identifier fields

ptl_pid_t 3.3.6

PTL_PID_MAX Maximum legal process

identifier

ptl_pid_t 3.6.2

PTL_PRIORITY_LIST specifies the priority list

attached to a portal table

entry

int 3.12.2

PTL_PROD Compute and return the

product of the initiator and

target value

ptl_op_t 3.15.4

PTL_PT_ANY wildcard for portal table

entry identifier fields

ptl_pt_index_t 3.7.1

PTL_PT_FLOWCTRL a flag to request flow

control

int 3.7.1

PTL_PT_ONLY_TRUNCATE a flag to indicate that the

priority list on this portal

table entry will only have

entries without the

PTL_ME_NO_TRUNCATE

option set

int 3.7.1

PTL_PT_ONLY_USE_ONCE a flag to indicate that the

priority list on this portal

table entry will only have

entries with the

PTL_ME_USE_ONCE or

PTL_LE_USE_ONCE option

set

int 3.7.1

PTL_RANK_ANY wildcard for rank fields ptl_rank_t 3.3.6

PTL_SEARCH_DELETE specifies that the

unexpected list should be

searched and the matching

item should be deleted

int 3.12.4

PTL_SEARCH_ONLY specifies that the

unexpected list should only

be searched

int 3.12.4

PTL_SIZE_MAX maximum value of a

ptl_size_t

ptl_size_t 3.3.1

PTL_SR_DROP_COUNT index for the dropped count

register

ptl_sr_index_t 3.3.7

PTL_SR_OPERATION_VIOLATIONS index for the operation

violations register

ptl_sr_index_t 3.3.7

PTL_SR_PERMISSION_VIOLATIONS index for the permission

violations register

ptl_sr_index_t 3.3.7

continued on next page

119

continued from previous page

Name Meaning Base Type Definition

PTL_SUM Compute and return the

sum of the initiator and

target

ptl_op_t 3.15.4

PTL_SWAP Swap the initiator and

target value

ptl_op_t 3.15.4

PTL_TARGET_BIND_INACCESSIBLE A flag to indicate that the

implementation should

allow LEs to be bound over

ranges of memory that are

not allocated

int 3.6.1

PTL_TIME_FOREVER a flag to indicate

unbounded time

ptl_time_t 3.13.9

PTL_TOTAL_DATA_ORDERING A flag to indicate that the

implementation should

attempt to provide total

data ordering

int 3.6.1

PTL_UID_ANY wildcard for user identifier ptl_uid_t 3.3.6

PTL_UINT16_T 16-bit unsigned integer ptl_op_t 3.15.4

PTL_UINT32_T 32-bit unsigned integer ptl_op_t 3.15.4

PTL_UINT64_T 64-bit unsigned integer ptl_op_t 3.15.4

PTL_UINT8_T 8-bit unsigned integer ptl_op_t 3.15.4

120

Chapter 4

Guide to Implementors

In this chapter, we provide a number of notes and clarifications useful to implementors of the Portals specification.

This chapter is not normative; that is, this chapter only seeks to clarify and raise subtle points in the standard. Should

any statement in this chapter conflict with statements in another chapter, the other chapter is correct.

4.1 Run-time Support

The Portals API does not include a run-time interface; this is assumed to be provided by other sources, such as the

machine system software or as part of an upper-layer protocol. This is similar to Open Fabrics, Myrinet/MX, and

TCP/IP, which provide communication semantics, but say little about process lifespan or interaction. Interaction with

a run-time is clearly unavoidable due to logically addressed network interfaces, but the proper interaction between the

run-time and PtlSetMap()/PtlGetMap() is the responsibility of the upper layer protocol.

Many implementations of the Portals specification (both Portals 4.0 and earlier specifications) were tightly coupled

with a specific run-time. It is expected that such coupling will continue on tightly integrated platforms in which

Portals is the lowest layer communication interface. While the user of the portals library must always call

PtlSetMap() before using a logically addressed interface, the implementation is free to ignore the requested mapping

and provide it’s own by returning PTL_IGNORED.

4.2 Data Transfer

The Portals API uses five types of messages: put, acknowledgment, get, reply, and atomic. In this section, we

describe the information passed on the wire for each type of message. We also describe how this information is used

to process incoming messages. The Portals specification does not enforce a given wire protocol or in what order and

what manner information is passed along the communication path.

4.2.1 Sending Messages

Table 4.1 summarizes the information that is transmitted for a put request. The first column provides a descriptive

name for the information, the second column provides the type for this information, the third column identifies the

source of the information, and the fourth column provides additional notes. Most information that is transmitted is

obtained directly from the put operation.

It may not be necessary for the implementation to transmit all fields listed in Table 4.1. For example, portals

semantics require that an acknowledgment event contains the user_ptr and it must be placed in the event queue

referenced by the eq_handle found in the MD referenced by the md_handle associated with the put; i.e., the

acknowledgment event provides a pointer that the application can use to identify the operation and must be placed the

in the right memory descriptor’s event queue. One approach would be to send the user_ptr and md_handle to the

121

Table 4.1. Send Request: Information Passed in a Send Request — PtlPut().

Information Type PtlPut() Notes

Argument

operation int indicates a put request

ack type ptl_ack_req_t ack_req

options unsigned int md_handle options field from NI associated with MD

initiator ptl_process_t local information

user ptl_uid_t local information

target ptl_process_t target_id

portal index ptl_pt_index_t pt_index

match bits ptl_match_bits_t match_bits opt. if options.PTL_NI_NO_MATCHING

offset ptl_size_t remote_offset

memory desc ptl_handle_md_t md_handle opt. if ack_req =PTL_NO_ACK_REQ

header data ptl_hdr_data_t hdr_data user data in header

put user pointer void * user_ptr opt. if ack_req =PTL_NO_ACK_REQ

or ack_req =PTL_CT_ACK_REQ

or ack_req =PTL_OC_ACK_REQ

length ptl_size_t length length argument

data bytes md_handle user data

target in the put and back again in the acknowledgment message. If an implementation has another way of tracking

the user_ptr and md_handle at the initiator, then sending the user_ptr and md_handle should not be necessary.

Notice that the match_bits, md_handle and user_ptr fields in the put operation are optional. If the put is originating

from a non-matching network interface, there is no need for the match_bits to be transmitted since the destination

will ignore them. Similarly, if no acknowledgment was requested, md_handle and user_ptr do not need to be sent. If

an acknowledgment is requested (either PTL_ACK_REQ, PTL_CT_ACK_REQ, or PTL_OC_ACK_REQ), then the md_handle

may be sent in the put message so that the target can send it back to the initiator in the acknowledgment message.

The md_handle is needed by the initiator to find the right event queue for the acknowledgment event. The user_ptr is

only required in the case of a full acknowledgment (PTL_ACK_REQ). PTL_CT_ACK_REQ and PTL_OC_ACK_REQ requests

do not require the user_ptr field to generate the acknowledgment event at the initiator of the put operation.

A portals header contains 8 bytes of user supplied data specified by the hdr_data argument passed to PtlPut(). This is

useful for out-of-band data transmissions with or without bulk data. The header bytes are stored in the event

generated at the target . (See Section 3.15.2 on page 90.)

Tables 4.2 and 4.3 summarizes the information transmitted in an acknowledgment. Most of the information is simply

echoed from the put request. Notice that the initiator and target are obtained directly from the put request but are

swapped in generating the acknowledgment. The only new pieces of information in the acknowledgment are the

manipulated length, which is determined as the put request is satisfied, and the actual offset used.

If an acknowledgment has been requested, the associated memory descriptor remains in use by the implementation

until the acknowledgment arrives and can be logged in the event queue. See Section 3.10.4 for how pending

operations affect when memory descriptors may be unlinked.

If the target match list entry has the PTL_ME_MANAGE_LOCAL flag set, the offset local to the target match list entry is

used. If the flag is not set, the offset requested by the initiator is used. An acknowledgment message returns the

actual value used.

Lightweight “counting” acknowledgments do not require the actual offset used or user pointer since they do not

generate a ptl_event_t at the put operation initiator .

122

Table 4.2. Acknowledgment: Information Passed in an Acknowledgment.

Information Type PtlPut() Notes

Argument

operation int indicates an acknowledgment

options unsigned int put_md_handle options field from NI associated with MD

initiator ptl_process_t target_id echo target of put

target ptl_process_t initiator echo initiator of put

memory descriptor ptl_handle_md_t md_handle echo md_handle of put

put user pointer void * user_ptr echo user_ptr of put

offset ptl_size_t remote_offset obtained from the operation

manipulated length ptl_size_t obtained from the operation

matched list ptl_list_t obtained from the operation

Table 4.3. Acknowledgment: Information Passed in a “Counting” Acknowl-

edgment.

Information Type PtlPut() Notes

Argument

operation int indicates an acknowledgment

options unsigned int put_md_handle options field from NI associated with MD

initiator ptl_process_t target_id local information on put target

target ptl_process_t initiator echo initiator of put

memory descriptor ptl_handle_md_t md_handle echo md_handle of put

manipulated length ptl_size_t obtained from the operation

Table 4.4 summarizes the information that is transmitted for a get request. Like the information transmitted in a put

request, most of the information transmitted in a get request is obtained directly from the PtlGet() operation. The

memory descriptor must not be unlinked until the reply is received.

Table 4.4. Get Request: Information Passed in a Get Request — PtlGet() and

PtlGetRegion().

Information Type PtlGet() Notes

Argument

operation int indicates a get operation

options unsigned int md_handle options field from NI associated with MD

initiator ptl_process_t local information

user ptl_uid_t local information

target ptl_process_t target_id

portal index ptl_pt_index_t pt_index

match bits ptl_match_bits_t match_bits optional if the PTL_NI_NO_MATCHING option

is set.

offset ptl_size_t remote_offset

memory descriptor ptl_handle_md_t md_handle destination of reply

length ptl_size_t length

initiator offset ptl_size_t local_offset

get user pointer void * user_ptr

123

Table 4.5 summarizes the information transmitted in a reply. Like an acknowledgment, most of the information is

simply echoed from the get request. The initiator and target are obtained directly from the get request but are

swapped in generating the reply. The only new information in the reply are the manipulated length, the actual offset

used, and the data, which are determined as the get request is satisfied.

Table 4.5. Reply: Information Passed in a Reply.

Information Type PtlGet() Notes

Argument

operation int indicates an reply

options unsigned int get_md_handle options field from NI associated with MD

initiator ptl_process_t target_id local information on get target

target ptl_process_t initiator echo initiator of get

memory descriptor ptl_handle_md_t md_handle echo md_handle of get

initiator offset ptl_size_t local_offset echo local_offset of get

get user pointer void * user_ptr echo user_ptr of get

manipulated length ptl_size_t obtained from the operation

offset ptl_size_t remote_offset obtained from the operation

matched list ptl_list_t obtained from the operation

data bytes obtained from the operation

Table 4.6 presents the information that needs to be transmitted from the initiator to the target for an atomic operation.

The result of an atomic operation is a reply and (optionally) an acknowledgment as described in Table 4.5.

Table 4.6. Atomic Request: Information Passed in an Atomic Request.

Information Type PtlAtomic() Notes

Argument

operation int indicates the type of atomic

operation and datatype

options unsigned int put_md_handle options field from NI associated with MD

ack type ptl_ack_req_t ack_req

initiator ptl_process_t local information

user ptl_uid_t local information

target ptl_process_t target_id

portal index ptl_pt_index_t pt_index

memory descriptor ptl_handle_md_t put_md_handle opt. if ack_req =PTL_NO_ACK_REQ

user pointer void * user_ptr opt. if ack_req =PTL_NO_ACK_REQ

or ack_req =PTL_CT_ACK_REQ

or ack_req =PTL_OC_ACK_REQ

match bits ptl_match_bits_t match_bits optional if the PTL_NI_NO_MATCHING option

is set.

offset ptl_size_t remote_offset

memory descriptor ptl_handle_md_t get_md_handle destination of reply

length ptl_size_t put_md_handle length member

operand bytes operand Used in CSWAP and MSWAP operations

data bytes put_md_handle user data

124

4.2.2 Receiving Messages

When an incoming message arrives on a network interface, the communication system first checks that the target

process identified in the request is a valid process that has initialized the network interface (i.e., that the target process

has a valid portal table). If this test fails, the communication system discards the message and increments the dropped

message count for the interface. The remainder of the processing depends on the type of the incoming message. put,

get, and atomic messages go through portals address translation (searching a list) and must then pass an access control

test. In contrast, acknowledgment and reply messages bypass the access control checks and the translation step.

Acknowledgment messages include the memory descriptor handle used in the original PtlPut() operation. This

memory descriptor will identify the event queue where the event should be recorded. Upon receipt of an

acknowledgment, the runtime system only needs to confirm that the memory descriptor and event queue still exist.

Should any of these conditions fail, the message is simply discarded, and the dropped message count for the interface

is incremented. Otherwise, the system builds an acknowledgment event from the information in the acknowledgment

message and adds it to the event queue.

Reception of reply messages is also relatively straightforward. Each reply message includes a memory descriptor

handle. If this descriptor exists, it is used to receive the message. A reply message will be dropped if the memory

descriptor identified in the request does not exist or it has become inactive. In this case, the dropped message count

for the interface is incremented. Every memory descriptor accepts and truncates incoming reply messages,

eliminating the other potential reasons for rejecting a reply message.

The critical step in processing an incoming put, get, or atomic request involves mapping the request to a match list

entry (or list entry). This step starts by using the portal index in the incoming request to identify a list of match list

entries (or list entries). On a matching interface, the list of match list entries is searched in sequential order until a

match list entry is found whose match criteria matches the match bits in the incoming request and that accepts the

request. On a non-matching interface, the first item on the list is used and a permissions check is performed.

Because acknowledgment and reply messages are generated in response to requests made by the process receiving

these messages, the checks performed by the runtime system for acknowledgments and replies are minimal. In

contrast, put, get, and atomic messages are generated by remote processes and the checks performed for these

messages are more extensive. Incoming put, get, or atomic messages may be rejected because:

• the portal index supplied in the request is not valid;

• the match bits supplied in the request do not match any of the match list entries that accepts the request, or

• the access control information provided in the list entry does not match the information provided in the

message.

In all cases, if the message is rejected, the incoming message is discarded and the dropped message count for the

interface is incremented.

A list entry or match list entry may reject an incoming request if the PTL_ME_OP_PUT or PTL_ME_OP_GET option has

not been enabled and the operation is put, get, or atomic (Table 4.7). In addition, a match list entry may reject an

incoming request if the length specified in the request is too long for the match list entry and the

PTL_ME_NO_TRUNCATE option has been enabled. Truncation is always enabled on standard list entries; thus, a

message cannot be rejected for this reason on a non-matching network interface.

Also see Sections 2.4 and Figure 2.11.

4.3 Event Generation and Error Reporting

The types of events and when they are generated is discussed in Chapter 3.13. Operations related to memory

descriptors, list entries, and match list entries may both generate a full event (of type ptl_event_t) and update a

125

Table 4.7. Portals Operations and ME/LE Flags: A - indicates that the oper-

ation will be rejected, and a • indicates that the operation will be accepted.

Target ME/LE Flags Operation

put get atomic

none - - -

PTL_ME_OP_PUT/PTL_LE_OP_PUT • - -

PTL_ME_OP_GET/PTL_LE_OP_GET - • -

both • • •

counting event. There is no implied ordering between the generation of a full event and updating of a counting event,

although if the user requests both a full event and a counting event, the implementation must deliver both in a timely

fashion.

Acknowledgement events require special attention due the the flexibility Portals provides the user in controlling

acknowledgments. An acknowledgment event is only generated if the initiator requests an acknowledgement and

either the target enables sending an acknowledgment in the list entry or an error occurs during the operation.

Requesting a full acknowledgement (PTL_ACK_REQ) without an event queue on the associated memory descriptor (or

with success events disabled) still results in the generation of a counting event.

126

Bibliography

[1] N.R. Adiga and et. al. An Overview of the BlueGene/L Supercomputer. In In Proceedings of the SC 2002

Conference on High Performance Networking and Computing, Baltimore, MD, November 2002.

[2] Robert Alverson. Red Storm. In Invited Talk, Hot Chips 15, August 2003.

[3] Christian Bell and Dan Bonachea. A new dma registration strategy for pinning-based high performance

networks. Parallel and Distributed Processing Symposium, International, 0:198a, 2003.

[4] Ron Brightwell, David S. Greenberg, Arthur B. Maccabe, and Rolf Riesen. Massively Parallel Computing with

Commodity Components. Parallel Computing, 26:243–266, February 2000.

[5] Ron Brightwell, Tramm Hudson, Rolf Riesen, and Arthur B. Maccabe. The Portals 3.0 message passing

interface. Technical Report SAND99-2959, Sandia National Laboratories, December 1999.

[6] Ron Brightwell and Arthur B. Maccabe. Scalability limitations of VIA-based technologies in supporting MPI.

In Fourth MPI Developers’ and Users’ Conference, March 2000.

[7] Ron Brightwell and Lance Shuler. Design and implementation of MPI on Puma portals. In Proceedings of the

Second MPI Developer’s Conference, pages 18–25, July 1996.

[8] Compaq, Microsoft, and Intel. Virtual Interface Architecture Specification Version 1.0. Technical report,

Compaq, Microsoft, and Intel, December 1997.

[9] Cray Research, Inc. SHMEM Technical Note for C, SG-2516 2.3, October 1994.

[10] Infiniband Trade Association. http://www.infinibandta.org, 1999.

[11] Y. Ishikawa, H. Tezuka, and A. Hori. PM: A High-Performance Communication Library for Multi-user Parallel

Envrionments. Technical Report TR-96015, RWCP, 1996.

[12] Mario Lauria, Scott Pakin, and Andrew Chien. Efficient Layering for High Speed Communication: Fast

Messages 2.x. In Proceedings of the IEEE International Symposium on High Performance Distributed

Computing, 1998.

[13] Arthur B. Maccabe, Kevin S. McCurley, Rolf Riesen, and Stephen R. Wheat. SUNMOS for the Intel Paragon:

A brief user’s guide. In Proceedings of the Intel Supercomputer Users’ Group. 1994 Annual North America

Users’ Conference., pages 245–251, June 1994.

[14] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The International Journal of

Supercomputer Applications and High Performance Computing, 8:159–416, 1994.

[15] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface, July 1997.

[16] Myricom, Inc. The GM Message Passing System. Technical report, Myricom, Inc., 1997.

[17] Rolf Riesen, Ron Brightwell, and Arthur B. Maccabe. The evolution of Portals, an API for high performance

communication. To be published, 2005.

[18] Rolf Riesen, Ron Brightwell, Arthur B. Maccabe, Trammell Hudson, and Kevin Pedretti. The Portals 3.3

message passing interface: Document revision 2.0. Technical report SAND2006-0420, Sandia National

Laboratories, January 2006.

127

[19] Lance Shuler, Chu Jong, Rolf Riesen, David van Dresser, Arthur B. Maccabe, Lee Ann Fisk, and T. Mack

Stallcup. The Puma operating system for massively parallel computers. In Proceeding of the 1995 Intel

Supercomputer User’s Group Conference. Intel Supercomputer User’s Group, 1995.

[20] Task Group of Technical Committee T11. Information Technology - Scheduled Transfer Protocol - Working

Draft 2.0. Technical report, Accredited Standards Committee NCITS, July 1998.

128

Appendix A

Portals Design Guidelines

Early versions of Portals were based on the idea of using data structures to describe to the transport mechanism how

data should be delivered. This worked well for the Puma OS on the Intel Paragon but not so well under Linux on

Cplant. The solution was to create a thin API over those data structures and add a level of abstraction. The result was

Portals 3.x. While Portals 3.x supported MPI well for kernel level implementations, more advanced offloading

network interfaces and the rising importance of PGAS models exposed several weaknesses. This led to several

enhancements that became Portals 4.x.

When designing and expanding this API, we were guided by several principles and requirements. We have divided

them into three categories: requirements that must be fulfilled by the API and its implementations, requirements that

should be met, and a wish list of things that would be nice if Portals 4.x could provide them.

A.1 Mandatory Requirements

Message passing protocols. Portals must support efficient implementations of commonly used message passing

protocols.

Partitioned Global Address Space (PGAS) Support. Portals must support efficient implementations of typical

PGAS languages and programming interfaces.

Portability. It must be possible to develop implementations of Portals on a variety of existing message passing

interfaces.

Scalability. It must be possible to write efficient implementations of Portals for systems with millions of nodes.

Performance. It must be possible to write high performance (e.g., low latency, high bandwidth) implementations of

Portals on existing hardware and on hardware capable of offloading Portals processing.

Multiprocess support. Portals must support use of the communication interface by tens of processes per node.

Communication between processes from different executables. Portals must support the ability to pass messages

between processes instantiated from different executables.

Runtime independence. The ability of a process to perform message passing must not depend on the existence of an

external runtime environment, scheduling mechanism, or other special utilities outside of normal UNIX process

startup.

Memory protection. Portals must ensure that a process cannot access the memory of another process without

consent.

129

A.2 The Will Requirements

Operational API. Portals will be defined by operations, not modifications to data structures. This means that the

interface will have explicit operations to send and receive messages. (It does not mean that the receive operation will

involve a copy of the message body.)

MPI. It will be possible to write an efficient implementation of the point-to-point operations in MPI 1 using Portals.

PGAS. It will be possible to write an efficient implementation of the one-sided and atomic operations found in

PGAS models using Portals.

Network Interfaces. It will be possible to write an efficient implementation of Portals using a network interface that

provides offload support.

Operating Systems. It will be possible to write an efficient implementation of Portals using a lightweight kernel or

Linux as the host OS.

Message Size. Portals will not impose an arbitrary restriction on the size of message that can be sent.

OS bypass. Portals will support an OS bypass message passing strategy. That is, high performance implementations

of the message passing mechanisms will be able to bypass the OS and deliver messages directly to the application.

Put/Get. Portals will support remote put/get operations.

Packets. It will be possible to write efficient implementations of Portals that packetize message transmission.

Receive operation. The receive operation of Portals will use an address and length pair to specify where the

message body should be placed.

Receiver managed communication. Portals will support receive-side management of message space, and this

management will be performed during message receipt.

Sender managed communication. Portals will support send-side management of message space.

Parallel I/O. Portals will be able to serve as the transport mechanism for a parallel file I/O system.

Gateways. It will be possible to write gateway processes using Portals. A gateway process is a process that receives

messages from one implementation of Portals and transmits them to another implementation of Portals.

Asynchronous operations. Portals will support asynchronous operations to allow computation and communication

to overlap.

Receive side matching. Portals will allow matching on the receive side before data is delivered into the user buffer.

A.3 The Should Requirements

Message Alignment. Portals should not impose any restrictions regarding the alignment of the address(es) used to

specify the contents of a message.

Striping. Portals should be able to take advantage of multiple interfaces on a single logical network to improve the

bandwidth

Socket API. Portals should support an efficient implementation of sockets (including UDP and TCP/IP).

Internetwork consistency. Portals should not impose any consistency requirements across multiple

networks/interfaces. In particular, there will not be any memory consistency/coherency requirements when messages

arrive on independent paths.

130

Ease of use. Programming with Portals should be no more complex than programming traditional message passing

environments such as UNIX sockets or MPI. An in-depth understanding of the implementation or access to

implementation-level information should not be required.

Minimal API. Only the smallest number of functions and definitions necessary to manipulate the data structures

should be specified. That means, for example, that convenience functions, which can be implemented with the

already defined functions, will not become part of the API.

131

132

Appendix B

README Definition

Each Portals implementation should provide a README file that details implementation-specific choices. This

appendix describes such a file by listing which parameters should be specified.

Limits. The call PtlNIInit() accepts a desired set of limits and returns a set of actual limits. The README should

state the possible ranges of actual limits for this implementation, as well as the acceptable ranges for the values

passed into PtlNIInit(). See Section 3.6.1

Resource Usage. The implementation will be required to consume some user memory for the limits specified in

PtlNIInit(). The README should document the memory resources required by the implementation and should

enumerate the relationship between the memory resources consumed and the limits requested in the desired set of

limits passed into PtlNIInit(). See Section 3.6.1

Status Registers. Portals define a set of status registers (Section 3.3.7). The type ptl_sr_index_t defines the

mandatory PTL_SR_DROP_COUNT, PTL_SR_PERMISSION_VIOLATIONS, and PTL_SR_OPERATION_VIOLATIONS, as

well as all other, implementation specific indexes. The README should list what indexes are available and what

their purposes are.

Network interfaces. Each Portals implementation defines PTL_IFACE_DEFAULT to access the default network

interface on a system (Sections 3.3.5 and 3.6.2). An implementation that supports multiple interfaces must specify

the constants used to access the various interfaces through PtlNIInit().

Portal table. The Portals specification says that a compliant implementation must provide at least 64 entries per

portal table (Section 3.6). The README file should state how many entries will actually be provided.

Alignment. If an implementation favors specific alignments for memory descriptors, the README should state

what they are and the (performance) consequences if they are not observed (Sections 3.10.1 and 3.12.1).

Furthermore, if the implementation supports unaligned atomic operations, it should be documented.

133

134

Appendix C

Summary of Changes

C.1 Portals 4.0.1

• Specify that PTL_EVENT_AUTO_UNLINK must come after all other events on a list entry / match list entry.

• PTL_EVENT_PT_DISABLED, PTL_EVENT_LINK, PTL_EVENT_AUTO_UNLINK, and PTL_EVENT_AUTO_FREE should

provide a user_ptr and ni_fail_type and not a start and hdr_data field.

• For clarity, remove “and return” from the description of PTL_MIN, PTL_MAX, PTL_SUM, PTL_PROD, PTL_LOR,

PTL_LAND, PTL_BOR, PTL_BAND, PTL_LXOR, PTL_BXOR from Section 3.15.4.

C.2 Portals 4.0

The most recent version of this document described Portals version 3.3 [18]. Since then we have made changes to the

API and semantics of Portals, as well as changes to the document. This appendix summarizes the changes between

version 3.3 and the current 4.0 version. Many of the fundamental changes were driven by the desire to reduce the

tight coupling required between the application processor and the portals processor, but some additions were made to

better support lighter weight communications models such as PGAS.

Foremost, Portals version 4.0 was substantially enhanced to better support the various PGAS programming models.

Communication operations that do not include matching were added along with key atomic operations. In addition,

the ordering definition was substantially strengthened relative to Portals version 3.3 for small messages. In support of

the lightweight communication semantics required by PGAS models, lightweight “counting” events and

acknowledgments were added. A PtlAtomic() function was added to support functionality commonly provided in

PGAS models. Finally, the Portals ordering model was substantially expanded to better support some PGAS models.

An equally fundamental change in Portals version 4.0 adds a mechanism to cope better with the concept of

unexpected messages in MPI. Whereas version 3.3 used PtlMDUpdate() to atomically insert items into the match list

so that the MPI implementation could manage unexpected messages, version 4.0 adds an overflow list where the

application provides buffer space that the implementation can use to store unexpected messages. The implementation

is then responsible for matching new list insertions to items that have arrived and are resident in the overflow list

space. This change was necessary to eliminate round trips between the processor and the NIC for each item that was

added to the match list (now named the priority list).

A third major change separated all resources for initiators and targets. Memory descriptors are used by the initiator to

describe memory regions while list entries are used by targets to describe the memory region and matching criteria

(in the case of match list entries). This separation of resources was also extended to events, where the number of

event types was significantly reduced and only required fields for a given event type must be defined.

To better offload collective operations, a set of triggered operations were added. These operations allow an

application to build non-blocking, offloaded collective operations with independent progress. They include variants

of both the data movement operations (get and put) as well as the atomic operations.

135

Another set of changes arise from a desire to simplify hardware implementations. The threshold value was removed

from the target and was replaced by the ability to specify that a match list entry is “use once” or “persistent”. List

insertions occur only at the tail of the list, since unexpected message handling has been separated out into a separate

list.

Access control entries were found to be a non-scalable resource, so they have been eliminated. At the same time, it

was recognized that the PTL_LE_OP_PUT and PTL_LE_OP_GET semantics required a form of matching. These two

options along with the ability to include user ID based authentication were moved to permissions fields on the

respective list entry or match list entry.

Ordering only at the message level was found to be insufficient for many PGAS models, which often require ordering

of data. Unfortunately, uniformly requiring data ordering could create unnecessary performance constraints. As such,

the ordering definition has been expanded to include data ordering and to let the user disable that ordering and

message ordering.

136

Index

A
A

ack_req (field) 90, 95, 101, 102, 122, 124

acknowledgement type . 89

acknowledgment . see operations

acknowledgment type . 89

actual (field) . 30, 41, 42, 56, 63

actual_map_size (field) . 45, 46

address space opening .19

address translation 19, 21, 24, 28, 125

addressing, portals . 32

alignment . 133

API . 12, [13]

API summary . 109

application bypass . 16, 17, 18, 19

application space . 21

argument names see structure fields

ASC . [13]

ASCI . [13]

Atomic

alignment . 92, 133

atomic . see operations

datatypes . 93

operations . 93

atomic operation 19, 22, 92, 112, 113

atomic swap . see swap

atomic_operation (field) . 78

atomic_type (field) .78

B
background . 16

buffer alignment . 53, 57, 65, 133

bypass

application . 16, 17, 18, 19

OS . 16, 17, 18, 130

C
CAF . 15

changes, API and document . 135

communication model .17

connection-oriented . 16

connectionless . 16, 17

constants . 35

PTL_ACK_REQ 35, 89, 114, 122, 126

PTL_BAND . 93, 94, 114, 135

PTL_BOR . 93, 94, 114, 135

PTL_BXOR . 93, 94, 114, 135

PTL_COHERENT_ATOMICS 41, 92, 114

PTL_CSWAP 92–94, 97, 98, 114

PTL_CSWAP_GE .93, 94, 114

PTL_CSWAP_GT .93, 94, 115

PTL_CSWAP_LE . 93, 94, 115

PTL_CSWAP_LT . 93, 94, 115

PTL_CSWAP_NE .93, 94, 115

PTL_CT_ACK_REQ 89, 115, 122, 124

PTL_CT_NONE 36, 54, 57, 65, 115

PTL_DOUBLE . 94, 115

PTL_DOUBLE_COMPLEX 94, 115

PTL_EQ_NONE 36, 47, 54, 73, 115

PTL_EVENT_ACK . 32, 53, 55, 57, 58, 64, 65, 72,

73, 75–78, 89, 90, 92, 95, 115

PTL_EVENT_ATOMIC . 58, 59, 66, 67, 72, 76–78,

92, 94, 115

PTL_EVENT_ATOMIC_OVERFLOW . 59, 62, 67,

70, 72, 76, 78, 94, 115

PTL_EVENT_AUTO_FREE 56, 57, 59, 64, 67, 72,

76, 78, 115, 135

PTL_EVENT_AUTO_UNLINK 56, 57, 59, 64, 67,

72, 73, 76, 78, 115, 135

PTL_EVENT_FETCH_ATOMIC . . . 72, 76–78, 96,

115

PTL_EVENT_FETCH_ATOMIC_OVERFLOW

59, 62, 67, 70, 72, 76, 78, 96, 115

PTL_EVENT_GET . . 58, 59, 66, 67, 71, 72, 76–78,

91, 115

PTL_EVENT_GET_OVERFLOW . . 59, 62, 67, 70,

72, 76, 78, 91, 115

PTL_EVENT_LINK 58, 59, 66, 68, 72, 76, 78, 115,

135

PTL_EVENT_PT_DISABLED . 32, 48, 59, 66, 67,

72, 76, 78, 79, 115, 135

PTL_EVENT_PUT . . 26, 58, 59, 66, 67, 72, 76–78,

89, 94, 115

PTL_EVENT_PUT_OVERFLOW . . 26, 59, 62, 67,

70, 72, 76, 78, 89, 115

PTL_EVENT_REPLY . . .32, 53, 55, 72, 75, 76, 78,

91, 92, 96, 97, 115

PTL_EVENT_SEARCH .58, 62, 66, 70, 73, 76–78,

115

PTL_EVENT_SEND 53, 55, 72, 73, 75–78, 89, 90,

92, 95, 96, 115

PTL_FLOAT . 94, 115

PTL_FLOAT_COMPLEX 94, 115

PTL_IFACE_DEFAULT 37, 115, 133

PTL_INT16_T . 94, 115

PTL_INT32_T . 94, 115

PTL_INT64_T . 94, 115

PTL_INT8_T . 93, 115

PTL_INVALID_HANDLE 36, 109, 115

137

PTL_IOVEC 52–54, 56, 58, 63, 66, 92, 116

PTL_LAND . 93, 94, 116, 135C

PTL_LE_ACK_DISABLE 58, 116

PTL_LE_EVENT_COMM_DISABLE 58, 116

PTL_LE_EVENT_CT_BYTES 59, 116

PTL_LE_EVENT_CT_COMM 59, 116

PTL_LE_EVENT_CT_OVERFLOW 59, 116

PTL_LE_EVENT_FLOWCTRL_DISABLE . . . 59,

116

PTL_LE_EVENT_LINK_DISABLE 58, 116

PTL_LE_EVENT_OVER_DISABLE 59, 116

PTL_LE_EVENT_SUCCESS_DISABLE . .59, 116

PTL_LE_EVENT_UNLINK_DISABLE . . . 59, 116

PTL_LE_IS_ACCESSIBLE 56, 58, 63, 116

PTL_LE_OP_GET 58, 116, 126, 136

PTL_LE_OP_PUT 58, 116, 126, 136

PTL_LE_UNEXPECTED_HDR_DISABLE . . . 58,

116

PTL_LE_USE_ONCE 47, 57–59, 72, 116, 119

PTL_LONG_DOUBLE93, 94, 116

PTL_LONG_DOUBLE_COMPLEX . . .93, 94, 116

PTL_LOR . 93, 94, 116, 135

PTL_LXOR . 93, 94, 116, 135

PTL_MAX . 93, 94, 117, 135

PTL_MD_EVENT_CT_ACK53, 117

PTL_MD_EVENT_CT_BYTES 53, 89, 117

PTL_MD_EVENT_CT_REPLY 53, 117

PTL_MD_EVENT_CT_SEND 53, 117

PTL_MD_EVENT_SEND_DISABLE53, 117

PTL_MD_EVENT_SUCCESS_DISABLE .53, 117

PTL_MD_UNORDERED 30, 31, 53, 117

PTL_MD_VOLATILE41, 53, 117

PTL_ME_ACK_DISABLE 66, 117

PTL_ME_EVENT_COMM_DISABLE 66, 73, 117

PTL_ME_EVENT_CT_BYTES 67, 117

PTL_ME_EVENT_CT_COMM 67, 117

PTL_ME_EVENT_CT_OVERFLOW 67, 117

PTL_ME_EVENT_FLOWCTRL_DISABLE . . .66,

67, 117

PTL_ME_EVENT_LINK_DISABLE 66, 117

PTL_ME_EVENT_OVER_DISABLE 67, 117

PTL_ME_EVENT_SUCCESS_DISABLE . 67, 117

PTL_ME_EVENT_UNLINK_DISABLE . . . 67, 73,

117

PTL_ME_IS_ACCESSIBLE 66, 117

PTL_ME_MANAGE_LOCAL . . 65, 66, 90, 91, 95,

97, 98, 117, 122

PTL_ME_MAY_ALIGN 66, 117

PTL_ME_NO_TRUNCATE . . 28, 47, 66, 118, 119,

125

PTL_ME_OP_GET 65, 92, 118, 125, 126

PTL_ME_OP_PUT 65, 92, 118, 125, 126

PTL_ME_UNEXPECTED_HDR_DISABLE . . .66,

118

PTL_ME_USE_ONCE 47, 66–68, 72, 118, 119

PTL_MIN . 93, 94, 118, 135

PTL_MSWAP 92–94, 97, 98, 118

PTL_NI_DROPPED . 74, 118

PTL_NI_LOGICAL 37, 41, 42, 118

PTL_NI_MATCHING 41, 42, 118

PTL_NI_NO_MATCH 62, 70, 73, 118

PTL_NI_NO_MATCHING 41, 42, 57, 118,

122–124

PTL_NI_OK 62, 70, 73, 74, 78, 118

PTL_NI_OP_VIOLATION 58, 65, 75, 118

PTL_NI_PERM_VIOLATION 57, 65, 75, 118

PTL_NI_PHYSICAL 37, 41, 42, 118

PTL_NI_PT_DISABLED 32, 74, 118

PTL_NI_SEGV 52, 56, 63, 118

PTL_NI_UNDELIVERABLE 74, 75, 118

PTL_NID_ANY . 37, 67, 118

PTL_NO_ACK_REQ 89, 118, 122, 124

PTL_OC_ACK_REQ 89, 119, 122, 124

PTL_OVERFLOW_LIST 60, 68, 119

PTL_PID_ANY 37, 42, 67, 119

PTL_PID_MAX .42, 119

PTL_PRIORITY_LIST 60, 68, 119

PTL_PROD . 93, 94, 119, 135

PTL_PT_ANY . 47, 119

PTL_PT_FLOWCTRL 26, 32, 47, 119

PTL_PT_ONLY_TRUNCATE 47, 119

PTL_PT_ONLY_USE_ONCE 47, 119

PTL_RANK_ANY 37, 67, 119

PTL_SEARCH_DELETE62, 70, 119

PTL_SEARCH_ONLY 62, 70, 119

PTL_SIZE_MAX 36, 52, 56, 63, 119

PTL_SR_DROP_COUNT 26, 32, 37, 119, 133

PTL_SR_OPERATION_VIOLATIONS .37, 58, 65,

119, 133

PTL_SR_PERMISSION_VIOLATIONS 37, 57, 65,

119, 133

PTL_SUM . 93, 94, 120, 135

PTL_SWAP 93, 94, 97, 98, 120

PTL_TARGET_BIND_INACCESSIBLE . . . 41, 56,

63, 120

PTL_TIME_FOREVER 82, 87, 120

PTL_TOTAL_DATA_ORDERING 30, 41, 120

PTL_UID_ANY 37, 57, 65, 120

PTL_UINT16_T . 94, 120

PTL_UINT32_T . 94, 120

PTL_UINT64_T . 94, 120

PTL_UINT8_T .94, 120

summary . 114

count (field) . 78, 79

counting event

allocate . 83

enable . 53, 59, 67

freeing . 84

138

freeing triggered operations 85

get . 85C

increment . 88

poll . 86

set . 87

triggered increment . 106

triggered set . 106

type . 83

wait . 86

counting events . 58, 66, 82, 82

Cplant . 12

CPU interrupts . 17

ct_handle (field) 54, 55, 57, 65, 83–89, 106, 107

ct_handles (field) . 87

D
Data Buffers . 28

data movement . 19, 24, 32, 88

data types . 36, 110

datatype (field) .95–98, 103–105

Deferred Communication Operations 107

end bundle . 108

limit bundling . 108

start bundle .107

design guidelines . 129

desired (field) . 30, 42

discarded events . 89

discarded messages . 17, 20, 125

DMA . [13]

dropped message count . 119, 125

dropped messages . 37, 80–82, 114

E
eq_handle (field) 47, 54, 55, 79–81, 121

eq_handles (field) .82

event . 18, 23, 58, 71

disable . 59, 67, 116, 117

occurrence . 73

overflow list . 59, 67

types . 71, 74

types (diagram) . 74

unlink . 59, 67

event (field) . 80–82, 85–87

event queue . [13]

allocation . 78

freeing . 79

get .80

poll . 81

type . 75

wait . 80

F
failure (field) . 83, 86, 88

failure notification . 73

faults . 18

features (field) . 30, 41, 56, 63, 92

fetch and atomic operation . 113

flow control .78, 79

support .31

user-level .16

function return codes see return codes

functions

PtlAtomic . 23, 88, 92, 94, 95, 95, 96, 99, 102, 103,

110–112, 124, 135

PtlAtomicSync92, 99, 99, 112, 113

PtlCTAlloc 32, 83, 84, 110–112, 114

PtlCTCancelTriggered 85, 85, 100, 110, 112

PtlCTFree 33, 83, 84, 84–87, 110, 112

PtlCTGet 83, 85, 85, 87, 88, 110, 112

PtlCTInc 83, 88, 88, 100, 106, 110, 112

PtlCTPoll 32, 83, 86, 87, 87, 110, 112–114

PtlCTSet83, 85, 87, 87, 106, 107, 110, 112

PtlCTWait 32, 83, 86, 86, 87, 110, 112, 114

PtlEndBundle 107, 108, 108, 111, 112

PtlEQAlloc 33, 35, 71, 78, 79, 110–112, 114

PtlEQFree 33, 71, 79, 79, 81, 82, 110, 112

PtlEQGet 71, 80, 80, 81, 110, 113, 114

PtlEQPoll 32, 71, 80, 81, 82, 82, 110, 112–114

PtlEQWait 32, 71, 80, 81, 81, 110, 113, 114

PtlFetchAtomic . . 23, 58, 65, 72, 88, 92, 94, 96, 96,

97, 103, 104, 110–113

PtlFini . 38, 39, 39, 113, 114

PtlGet 88, 91, 91, 101, 102, 110–113, 123, 124

PtlGetId . 41, 50, 51, 111, 113

PtlGetMap 44, 45, 45, 111–114, 121

PtlGetPhysId 41, 44, 50, 51, 111, 113

PtlGetUid .49, 49, 111–113

PtlHandleIsEqual 109, 109, 110, 113, 114

PtlInit 35, 38, 38, 39, 113, 114

PtlLEAppend .31, 56, 59, 60, 60–62, 68, 72, 73, 77,

110–114

PtlLESearch62, 62, 70, 73, 111–113

PtlLEUnlink 25, 56, 61, 61, 110, 113, 114

PtlMDBind 36, 52, 54, 54, 110, 111, 113, 114

PtlMDRelease 36, 52, 55, 55, 110, 113

PtlMEAppend 31, 63, 68, 68–70, 72, 73, 77,

110–114

PtlMESearch 70, 70, 73, 111–113

PtlMEUnlink 25, 33, 63, 69, 69, 110, 113, 114

PtlNIFini . . . 39, 41, 43, 43, 81, 82, 86, 87, 111, 113

PtlNIHandle 36, 39, 44, 44, 110, 111, 113

PtlNIInit . . 30, 31, 39, 41, 41–44, 92, 111, 113, 114,

133

PtlNIStatus37, 39, 43, 43, 111–113

PtlPTAlloc 46, 46, 79, 110–114

PtlPTDisable 32, 48, 48, 74, 111–113

PtlPTEnable32, 48, 49, 49, 111–113

139

PtlPTFree .47, 47, 111–114

PtlPut 88, 89, 90, 91, 94, 95, 97, 98, 100, 101,

110–113, 122, 123, 125F

PtlSetMap 41, 44, 45, 45, 111–114, 121

PtlStartBundle 107, 107, 108, 111, 113

PtlSwap . . . 58, 65, 72, 88, 92, 94, 97, 98, 104, 105,

110–113

PtlTriggeredAtomic 99, 102, 102, 110–113

PtlTriggeredCTInc . . . 102, 106, 106, 110, 112, 113

PtlTriggeredCTSet 102, 107, 110, 112, 113

PtlTriggeredFetchAtomic 103, 103, 110–113

PtlTriggeredGet 99, 101, 101, 110–113

PtlTriggeredPut100, 100, 106, 110–113

PtlTriggeredSwap 104, 105, 110–113

summary . 112

G
gather/scatter . see scatter/gather

get . see operations

get ID . 51

Get Map . 45

get uid . 49

get_md_handle (field) 92, 96–98, 103, 105, 124

H
handle . 36

comparison . 109

operations . 109

handle (field) . 44

handle1 (field) . 109

handle2 (field) . 109

hdr_data (field)73, 77, 90, 95, 97, 98, 101, 103–105,

122, 135

header data . 90, 111, 122

header, trusted .49

I
I/O vector . see scatter/gather, 54

ID .37

get .51

network interface . 37

node . see node ID

process .see process ID

thread . see thread ID

uid (get) .49

user . see user ID

id (field) . 51

identifier . see ID

iface (field) . 41, 42

ignore bits . 28, 67

ignore_bits (field) .67

implementation notes . 11

implementation, quality . 42

increment (field) . 88, 106

indexes, portal .37

initialization . 38

initiator . . see also target, [13], 17, 19, 21, 22, 24, 28, 54,

57, 64, 72–77, 89–92, 96, 122–124, 126

initiator (field) .77

interrupt . 17

interrupt latency . 17

iov_base (field) . 54

iov_len (field) . 54

L
LE . 56

access control .24

alignment . 57

append . 59

list types . 60

options . 58

pending operation . 61

permissions . 24

persistent . 59

protection . 24

search .62

search and delete . 62

search operations .62

unlink . 56, 61, 72, 113

le (field) . 60, 63

le_handle (field) .60, 61

length (field) . . 41, 52, 53, 56, 57, 63, 65, 90–92, 95, 97,

98, 101, 102, 104, 105, 122–124

lightweight events . 82

Limit Usage of Bundling . 108

limits . 39, 39, 111, 133

Linux . 130

list . [13], 56

list entries . 17

list entry . see LE, 56, 57

local offset . see offset

local_get_offset (field) 96–98, 104, 105

local_offset (field) 90, 91, 95, 101, 102, 123, 124

local_put_offset (field)96–98, 104, 105

M
map_size (field) . 45, 46

mapping (field) . 45, 46

match bits 28, 35, 37, 67, 90, 91, 95, 97, 98, 111,

122–125

match ID checking . 69

match list . 63

match list entry . see ME, 57, 63, 67

match_bits (field) 67, 77, 90, 91, 95, 97, 98, 101,

103–105, 122–124

match_id (field) .64, 67, 69

140

matching address translation . 29

max_atomic_size (field) 28, 40, 92, 95, 97, 98

max_cts (field) . 40M

max_entries (field) . 40

max_eqs (field) . 40

max_fetch_atomic_size (field) 40, 92, 96, 97

max_iovecs (field) . 40

max_list_size (field) . 40

max_mds (field) . 40

max_msg_size (field) . 40

max_pt_index (field) . 40

max_triggered_ops (field) . 40

max_unexpected_headers (field) 32, 40

max_volatile_size (field) . 41, 53

max_war_ordered_size (field) 30, 31, 41

max_waw_ordered_size (field) 30, 31, 40

MD . 52

alignment . 53, 133

bind . 54

options . 53

pending operation . 55, 122

release . 52, 55, 113

unlink . 123

volatile . 41, 53

md (field) . 55

md_handle (field) 55, 89–91, 95, 100–102, 121–124

ME . 63

access control . 24, 28

alignment . 65, 133

append . 68

free . 76, 115

ignore bits . see ignore bits

link . 76

match bits . see match bits

message reject . 125

options . 65

pending operation . 69

permissions . 24, 28

persistent . 68

protection . 24, 28

search . 62, 70, 73, 76, 115

search and delete . 62

search operations .62

truncate . 66, 118, 125

unlink 28, 63, 65, 69, 71–73, 76, 113, 115

me (field) .68, 70

me_handle (field) . 68, 69

memory descriptor see also MD, [13], 52

message . [13]

message operation . [13]

message rejection .125

messages, receiving .125

messages, sending . 121

min_free (field) . 28, 65

mlength (field) 26, 53, 59, 67, 73, 77, 89

MPI [13], 15, 16, 24, 61, 63, 69, 71, 91, 130

progress rule . 16, 18

MPI scalability . 16

MPP . [13]

N
NAL . [13]

naming conventions .35

network . [13]

network independence . 16

network interface see also NI, 17, 35–37, 39, 41, 57, 125

network interface initialization . 41

network interfaces

multiple . 133

network scalability .15

new_ct (field) . 88, 107

NI

options . 41

retrieving logical maps . 45

setting logical maps . 44

NI fini . 43

NI handle . 44

NI init . 41

NI status . 43

ni_fail_type (field) .32, 52, 53, 56–59, 62, 63, 65, 67, 70,

73, 74, 78, 135

ni_handle (field) . . .41–46, 48, 49, 51, 55, 59, 60, 62, 68,

70, 79, 84, 92, 107, 108

nid (field) . 50

node . [13]

node ID . 24, 28, 37, 50

non-matching address translation 27

NULL LE . 56

NULL ME . 63

O
offset . 24, 122–124

local . 65, 66, 77, 90, 91, 117

remote 58, 65, 77, 90, 91, 95, 97, 98

one-sided operation . 17

opening into address space . 19

operand . 124

operand (field) . 92, 97, 98, 105

operation (field) 95, 97, 98, 103–105

operation violations count . 119

operations

acknowledgment . . . 22, 43, 58, 66, 71–73, 121–125

atomic 13, 19, 21, 22, 28, 30, 31, 40, 41, 43, 72, 73,

89, 94, 94, 121, 124–126

atomic sync . 99

atomics . 92

fetch and atomic . 96

141

get 13, 19, 21, 22, 28, 30, 32, 40, 41, 43, 58, 65, 66,

71–74, 91, 92, 113, 116, 118, 121, 123–126

one-sided . 17O

put 13, 17, 19, 21, 23, 28, 30–32, 40, 41, 43, 52, 53,

56, 58, 61, 63, 65, 66, 69, 71–74, 89, 89–92,

113, 116, 118, 121–123, 125, 126

reply 21, 22, 28, 40, 43, 58, 66, 72, 74, 91, 92, 121,

123–125

swap . 97

two-sided . 17, 28

options (field) 41, 46, 53, 58, 65, 122–124

Ordering . 30

adaptive . 31

long messages . 30

overlapping regions . 31

short messages . 30

unexpected messages . 31

ordering semantics . 17, 30, 53

OS bypass . 16, 17, 18, 130

overflow list . . 20, 25, 28, 32, 56, 57, 62, 63, 73, 77, 135

P
parallel job .17

pending operation .see MD

performance . 129

permission violations count . 119

PGAS .15, 130

pid (field) . 41, 42, 50

portability . 39

portal

indexes . 37

table . 39, 133

table index 46–49, 56, 63, 122–125

portal table entry . 35, 46

allocation . 46

disable . 48

enable . 48

freeing . 47

portal table entry disabled event 115

Portals

early versions . 12

Version 2.0 . 12

Version 3.0 . 12

portals

addressing see address translation

constants . see constants, 35

constants summary . 114

data buffers .28

data types .36, 110

design . 129

functions . see functions

functions summary . 112

handle . 36

multi-threading . 32

naming conventions . 35

operations . see operations

ordering .30

return codes . see return codes

return codes summary . 113

scalability . 17

sizes . 36

portals4.h . 35

priority list [13], 20, 25, 27, 56, 57, 62, 70

process . [13], 32

process ID . 24, 28, 37, 42, 50, 50–52, 63, 67, 69, 90, 95,

97, 98, 111

well known . 42

progress . 18

progress rule . 16, 18

protected space . 21

PT

options . 46

pt_index (field) 47–49, 59, 60, 62, 68, 70, 77, 90, 91, 95,

97, 98, 101, 103–105, 122–124

pt_index_req (field) . 47

PTL_ACK_REQ (const) 35, 89, 114, 122, 126

PTL_ARG_INVALID (return code) . . 38, 42–51, 55, 56,

60, 61, 63, 69–71, 79–82, 84–88, 91, 92, 96,

97, 99, 101–104, 106–109, 113

PTL_BAND (const) 93, 94, 114, 135

PTL_BOR (const) . 93, 94, 114, 135

PTL_BXOR (const) 93, 94, 114, 135

PTL_COHERENT_ATOMICS (const) 41, 92, 114

PTL_CSWAP (const)92–94, 97, 98, 114

PTL_CSWAP_GE (const) 93, 94, 114

PTL_CSWAP_GT (const) 93, 94, 115

PTL_CSWAP_LE (const) 93, 94, 115

PTL_CSWAP_LT (const) 93, 94, 115

PTL_CSWAP_NE (const) 93, 94, 115

PTL_CT_ACK_REQ (const) 89, 115, 122, 124

PTL_CT_NONE (const) 36, 54, 57, 65, 115

PTL_CT_NONE_REACHED (return code) 87, 113

PTL_DOUBLE (const) . 94, 115

PTL_DOUBLE_COMPLEX (const) 94, 115

PTL_EQ_DROPPED (return code) 80–82, 114

PTL_EQ_EMPTY (return code)80, 82, 114

PTL_EQ_NONE (const)36, 47, 54, 73, 115

PTL_EVENT_ACK (const) . . .32, 53, 55, 57, 58, 64, 65,

72, 73, 75–78, 89, 90, 92, 95, 115

PTL_EVENT_ATOMIC (const) 58, 59, 66, 67, 72,

76–78, 92, 94, 115

PTL_EVENT_ATOMIC_OVERFLOW (const) . . 59, 62,

67, 70, 72, 76, 78, 94, 115

PTL_EVENT_AUTO_FREE (const) . 56, 57, 59, 64, 67,

72, 76, 78, 115, 135

PTL_EVENT_AUTO_UNLINK (const) . 56, 57, 59, 64,

67, 72, 73, 76, 78, 115, 135

142

PTL_EVENT_FETCH_ATOMIC (const) 72, 76–78, 96,

115

PTL_EVENT_FETCH_ATOMIC_OVERFLOW (const)

59, 62, 67, 70, 72, 76, 78, 96, 115P

PTL_EVENT_GET (const) 58, 59, 66, 67, 71, 72, 76–78,

91, 115

PTL_EVENT_GET_OVERFLOW (const) 59, 62, 67, 70,

72, 76, 78, 91, 115

PTL_EVENT_LINK (const) . . 58, 59, 66, 68, 72, 76, 78,

115, 135

PTL_EVENT_PT_DISABLED (const) . . 32, 48, 59, 66,

67, 72, 76, 78, 79, 115, 135

PTL_EVENT_PUT (const) 26, 58, 59, 66, 67, 72, 76–78,

89, 94, 115

PTL_EVENT_PUT_OVERFLOW (const) 26, 59, 62, 67,

70, 72, 76, 78, 89, 115

PTL_EVENT_REPLY (const) 32, 53, 55, 72, 75, 76, 78,

91, 92, 96, 97, 115

PTL_EVENT_SEARCH (const) 58, 62, 66, 70, 73,

76–78, 115

PTL_EVENT_SEND (const) . 53, 55, 72, 73, 75–78, 89,

90, 92, 95, 96, 115

PTL_FAIL (return code) . 38, 114

PTL_FLOAT (const) . 94, 115

PTL_FLOAT_COMPLEX (const) 94, 115

PTL_IFACE_DEFAULT (const) 37, 115, 133

PTL_IGNORED (return code) 45, 114, 121

PTL_IN_USE (return code) 61, 69, 70, 114

PTL_INT16_T (const) . 94, 115

PTL_INT32_T (const) . 94, 115

PTL_INT64_T (const) . 94, 115

PTL_INT8_T (const) . 93, 115

PTL_INTERRUPTED (return code) . 81, 82, 86, 87, 114

PTL_INVALID_HANDLE (const) 36, 109, 115

PTL_IOVEC (const) 52–54, 56, 58, 63, 66, 92, 116

PTL_LAND (const) 93, 94, 116, 135

PTL_LE_ACK_DISABLE (const) 58, 116

PTL_LE_EVENT_COMM_DISABLE (const) . . 58, 116

PTL_LE_EVENT_CT_BYTES (const)59, 116

PTL_LE_EVENT_CT_COMM (const)59, 116

PTL_LE_EVENT_CT_OVERFLOW (const) . . . 59, 116

PTL_LE_EVENT_FLOWCTRL_DISABLE (const) . 59,

116

PTL_LE_EVENT_LINK_DISABLE (const) 58, 116

PTL_LE_EVENT_OVER_DISABLE (const) . . . 59, 116

PTL_LE_EVENT_SUCCESS_DISABLE (const) . . . 59,

116

PTL_LE_EVENT_UNLINK_DISABLE (const) 59, 116

PTL_LE_IS_ACCESSIBLE (const) 56, 58, 63, 116

PTL_LE_OP_GET (const) 58, 116, 126, 136

PTL_LE_OP_PUT (const) 58, 116, 126, 136

PTL_LE_UNEXPECTED_HDR_DISABLE (const) . 58,

116

PTL_LE_USE_ONCE (const) . . 47, 57–59, 72, 116, 119

PTL_LIST_TOO_LONG (return code) 60, 69, 114

PTL_LONG_DOUBLE (const) 93, 94, 116

PTL_LONG_DOUBLE_COMPLEX (const) 93, 94, 116

PTL_LOR (const) . 93, 94, 116, 135

PTL_LXOR (const) 93, 94, 116, 135

PTL_MAX (const) 93, 94, 117, 135

PTL_MD_EVENT_CT_ACK (const) 53, 117

PTL_MD_EVENT_CT_BYTES (const) 53, 89, 117

PTL_MD_EVENT_CT_REPLY (const) 53, 117

PTL_MD_EVENT_CT_SEND (const) 53, 117

PTL_MD_EVENT_SEND_DISABLE (const) . . 53, 117

PTL_MD_EVENT_SUCCESS_DISABLE (const) . . 53,

117

PTL_MD_UNORDERED (const) 30, 31, 53, 117

PTL_MD_VOLATILE (const) 41, 53, 117

PTL_ME_ACK_DISABLE (const) 66, 117

PTL_ME_EVENT_COMM_DISABLE (const) . . 66, 73,

117

PTL_ME_EVENT_CT_BYTES (const) 67, 117

PTL_ME_EVENT_CT_COMM (const) 67, 117

PTL_ME_EVENT_CT_OVERFLOW (const) . . . 67, 117

PTL_ME_EVENT_FLOWCTRL_DISABLE (const) 66,

67, 117

PTL_ME_EVENT_LINK_DISABLE (const) . . . 66, 117

PTL_ME_EVENT_OVER_DISABLE (const) . . 67, 117

PTL_ME_EVENT_SUCCESS_DISABLE (const) . . .67,

117

PTL_ME_EVENT_UNLINK_DISABLE (const) 67, 73,

117

PTL_ME_IS_ACCESSIBLE (const) 66, 117

PTL_ME_MANAGE_LOCAL (const) 65, 66, 90, 91, 95,

97, 98, 117, 122

PTL_ME_MAY_ALIGN (const) 66, 117

PTL_ME_NO_TRUNCATE (const) 28, 47, 66, 118, 119,

125

PTL_ME_OP_GET (const) 65, 92, 118, 125, 126

PTL_ME_OP_PUT (const) 65, 92, 118, 125, 126

PTL_ME_UNEXPECTED_HDR_DISABLE (const) 66,

118

PTL_ME_USE_ONCE (const) . 47, 66–68, 72, 118, 119

PTL_MIN (const) . 93, 94, 118, 135

PTL_MSWAP (const) 92–94, 97, 98, 118

PTL_NI_DROPPED (const)74, 118

PTL_NI_LOGICAL (const) 37, 41, 42, 118

PTL_NI_MATCHING (const) 41, 42, 118

PTL_NI_NO_MATCH (const)62, 70, 73, 118

PTL_NI_NO_MATCHING (const) 41, 42, 57, 118,

122–124

PTL_NI_OK (const) 62, 70, 73, 74, 78, 118

PTL_NI_OP_VIOLATION (const) 58, 65, 75, 118

PTL_NI_PERM_VIOLATION (const) . . 57, 65, 75, 118

PTL_NI_PHYSICAL (const) 37, 41, 42, 118

PTL_NI_PT_DISABLED (const) 32, 74, 118

PTL_NI_SEGV (const) 52, 56, 63, 118

143

PTL_NI_UNDELIVERABLE (const) 74, 75, 118

PTL_NID_ANY (const) 37, 67, 118P

PTL_NO_ACK_REQ (const) 89, 118, 122, 124

PTL_NO_INIT (return code) . 42–52, 55, 56, 60, 61, 63,

69–71, 79–82, 84–88, 90, 92, 96, 97, 99,

101–109, 114

PTL_NO_SPACE (return code) . . .42, 45, 46, 55, 60, 69,

79, 84, 114

PTL_OC_ACK_REQ (const)89, 119, 122, 124

PTL_OK (return code) 35, 38, 42–51, 53, 55, 56, 59–61,

63, 67, 69–71, 79–82, 84–88, 90, 92, 95, 97,

99, 101–109, 114

PTL_OVERFLOW_LIST (const)60, 68, 119

PTL_PID_ANY (const) 37, 42, 67, 119

PTL_PID_IN_USE (return code) 42, 114

PTL_PID_MAX (const) . 42, 119

PTL_PRIORITY_LIST (const) 60, 68, 119

PTL_PROD (const) 93, 94, 119, 135

PTL_PT_ANY (const) .47, 119

PTL_PT_EQ_NEEDED (return code) 47, 114

PTL_PT_FLOWCTRL (const)26, 32, 47, 119

PTL_PT_FULL (return code) 47, 114

PTL_PT_IN_USE (return code) 47, 48, 114

PTL_PT_ONLY_TRUNCATE (const)47, 119

PTL_PT_ONLY_USE_ONCE (const) 47, 119

PTL_RANK_ANY (const) 37, 67, 119

PTL_SEARCH_DELETE (const) 62, 70, 119

PTL_SEARCH_ONLY (const) 62, 70, 119

PTL_SIZE_MAX (const) 36, 52, 56, 63, 119

PTL_SR_DROP_COUNT (const) . . 26, 32, 37, 119, 133

PTL_SR_OPERATION_VIOLATIONS (const) . . 37, 58,

65, 119, 133

PTL_SR_PERMISSION_VIOLATIONS (const) . 37, 57,

65, 119, 133

PTL_SUM (const) 93, 94, 120, 135

PTL_SWAP (const) 93, 94, 97, 98, 120

PTL_TARGET_BIND_INACCESSIBLE (const) 41, 56,

63, 120

PTL_TIME_FOREVER (const) 82, 87, 120

PTL_TOTAL_DATA_ORDERING (const) . . 30, 41, 120

PTL_UID_ANY (const) 37, 57, 65, 120

PTL_UINT16_T (const) . 94, 120

PTL_UINT32_T (const) . 94, 120

PTL_UINT64_T (const) . 94, 120

PTL_UINT8_T (const) . 94, 120

ptl_ack_req_t (type) . . .89, 110, 114, 115, 118, 119, 122,

124

ptl_ct_event_t (type) 83, 85–87, 110, 112

ptl_datatype_t (type) 92, 93, 95–97, 110

ptl_event_kind_t (type)71, 110, 115

ptl_event_t (type) . 71, 75, 78, 80–82, 110–112, 122, 125

ptl_handle_any_t (type) 36, 110, 115

ptl_handle_ct_t (type) 36, 82, 83, 110, 115

ptl_handle_eq_t (type) 36, 71, 110, 115

ptl_handle_le_t (type) .110

ptl_handle_md_t (type) 110, 122–124

ptl_handle_me_t (type) . 110

ptl_handle_ni_t (type) . 36, 111

ptl_hdr_data_t (type) . 111, 122

ptl_interface_t (type) .37, 111, 115

ptl_iovec_t (type)52–54, 56, 58, 63, 66, 111, 112

ptl_le_t (type) . 57, 110–112

ptl_list (field) . 59, 60, 68, 77

ptl_list_t (type) 60, 68, 111, 123, 124

ptl_match_bits_t (type)35, 37, 111, 122–124

ptl_md_t (type) 30, 31, 52, 110–112

ptl_me_t (type) . 64, 110–112

ptl_ni_fail_t (type) .74, 111, 118

ptl_ni_limits_t (type) 31, 39, 111, 112

ptl_nid_t (type) . 37, 111, 118

ptl_op_t (type) 92, 93, 95, 111, 114–120

ptl_pid_t (type) . 37, 111, 119

ptl_process_t (type) . . 45, 46, 50, 67, 111, 112, 122–124

ptl_pt_index_t (type)37, 112, 119, 122–124

ptl_rank_t (type) . 37, 112, 119

ptl_search_op (field) . 62, 63, 70, 71

ptl_search_op_t (type) . 62, 112

ptl_size_t (type) 36, 112, 119, 122–124

ptl_sr_index_t (type) 37, 112, 119, 133

ptl_sr_value_t (type) . 37, 112

ptl_time_t (type) . 112, 120

ptl_uid_t (type)37, 112, 120, 122–124

PtlAtomic (func) 23, 88, 92, 94, 95, 95, 96, 99, 102, 103,

110–112, 124, 135

PtlAtomicSync (func) 92, 99, 99, 112, 113

PtlCTAlloc (func) 32, 83, 84, 110–112, 114

PtlCTCancelTriggered (func) 85, 85, 100, 110, 112

PtlCTFree (func)33, 83, 84, 84–87, 110, 112

PtlCTGet (func) 83, 85, 85, 87, 88, 110, 112

PtlCTInc (func) 83, 88, 88, 100, 106, 110, 112

PtlCTPoll (func) 32, 83, 86, 87, 87, 110, 112–114

PtlCTSet (func) 83, 85, 87, 87, 106, 107, 110, 112

PtlCTWait (func) 32, 83, 86, 86, 87, 110, 112, 114

PtlEndBundle (func) 107, 108, 108, 111, 112

PtlEQAlloc (func) 33, 35, 71, 78, 79, 110–112, 114

PtlEQFree (func) 33, 71, 79, 79, 81, 82, 110, 112

PtlEQGet (func) 71, 80, 80, 81, 110, 113, 114

PtlEQPoll (func) . . . 32, 71, 80, 81, 82, 82, 110, 112–114

PtlEQWait (func) 32, 71, 80, 81, 81, 110, 113, 114

PtlFetchAtomic (func) .23, 58, 65, 72, 88, 92, 94, 96, 96,

97, 103, 104, 110–113

PtlFini (func) . 38, 39, 39, 113, 114

PtlGet (func) . . . 88, 91, 91, 101, 102, 110–113, 123, 124

PtlGetId (func) 41, 50, 51, 111, 113

PtlGetMap (func) 44, 45, 45, 111–114, 121

PtlGetPhysId (func) 41, 44, 50, 51, 111, 113

PtlGetUid (func) . 49, 49, 111–113

PtlHandleIsEqual (func) 109, 109, 110, 113, 114

144

PtlInit (func) 35, 38, 38, 39, 113, 114

PtlLEAppend (func) . . 31, 56, 59, 60, 60–62, 68, 72, 73,

77, 110–114P

PtlLESearch (func) 62, 62, 70, 73, 111–113

PtlLEUnlink (func) 25, 56, 61, 61, 110, 113, 114

PtlMDBind (func) 36, 52, 54, 54, 110, 111, 113, 114

PtlMDRelease (func) 36, 52, 55, 55, 110, 113

PtlMEAppend (func) 31, 63, 68, 68–70, 72, 73, 77,

110–114

PtlMESearch (func) 70, 70, 73, 111–113

PtlMEUnlink (func) . . . 25, 33, 63, 69, 69, 110, 113, 114

PtlNIFini (func) . 39, 41, 43, 43, 81, 82, 86, 87, 111, 113

PtlNIHandle (func) 36, 39, 44, 44, 110, 111, 113

PtlNIInit (func) 30, 31, 39, 41, 41–44, 92, 111, 113, 114,

133

PtlNIStatus (func) 37, 39, 43, 43, 111–113

PtlPTAlloc (func)46, 46, 79, 110–114

PtlPTDisable (func) 32, 48, 48, 74, 111–113

PtlPTEnable (func) 32, 48, 49, 49, 111–113

PtlPTFree (func) . 47, 47, 111–114

PtlPut (func) 88, 89, 90, 91, 94, 95, 97, 98, 100, 101,

110–113, 122, 123, 125

PtlSetMap (func) 41, 44, 45, 45, 111–114, 121

PtlStartBundle (func) 107, 107, 108, 111, 113

PtlSwap (func) . . 58, 65, 72, 88, 92, 94, 97, 98, 104, 105,

110–113

PtlTriggeredAtomic (func) 99, 102, 102, 110–113

PtlTriggeredCTInc (func) . . 102, 106, 106, 110, 112, 113

PtlTriggeredCTSet (func) 102, 107, 110, 112, 113

PtlTriggeredFetchAtomic (func) 103, 103, 110–113

PtlTriggeredGet (func) 99, 101, 101, 110–113

PtlTriggeredPut (func) 100, 100, 106, 110–113

PtlTriggeredSwap (func)104, 105, 110–113

Puma . 16

purpose . 15

put . see operations

put_md_handle (field) 92, 96–98, 104, 105, 123, 124

Q
quality implementation . 42

quality of implementation . 17

R
rank . 20, 28, 37, 44, 45, 50–52

rank (field) . 37, 45, 50

README . 35, 133

receiver-managed . 16

reliable communication . 20

remote offset .see offset

remote_offset (field)77, 90, 91, 95, 97, 98, 101–105,

122–124

reply .see operations

return codes . 38, 113

PTL_ARG_INVALID 38, 42–51, 55, 56, 60, 61, 63,

69–71, 79–82, 84–88, 91, 92, 96, 97, 99,

101–104, 106–109, 113

PTL_CT_NONE_REACHED87, 113

PTL_EQ_DROPPED 80–82, 114

PTL_EQ_EMPTY 80, 82, 114

PTL_FAIL . 38, 114

PTL_IGNORED . 45, 114, 121

PTL_IN_USE . 61, 69, 70, 114

PTL_INTERRUPTED 81, 82, 86, 87, 114

PTL_LIST_TOO_LONG 60, 69, 114

PTL_NO_INIT . . 42–52, 55, 56, 60, 61, 63, 69–71,

79–82, 84–88, 90, 92, 96, 97, 99, 101–109, 114

PTL_NO_SPACE 42, 45, 46, 55, 60, 69, 79, 84, 114

PTL_OK . 35, 38, 42–51, 53, 55, 56, 59–61, 63, 67,

69–71, 79–82, 84–88, 90, 92, 95, 97, 99,

101–109, 114

PTL_PID_IN_USE . 42, 114

PTL_PT_EQ_NEEDED47, 114

PTL_PT_FULL . 47, 114

PTL_PT_IN_USE .47, 48, 114

summary . 113

rlength (field) .26, 73, 77

RMPP . [13]

S
scalability . 17, 129

guarantee .17

MPI . 16

network . 15

scatter/gather 53, 54, 58, 65, 66, 111, 116

Search

event generation . 62, 70

status registers .62, 70

send . 19

send event . 90, 92, 96, 115

Set Map . 44

SHMEM .15

shmem_fence() . 30

size (field) . 82, 87

sizes . 36

space

application . 21

protected . 21

split event sequence see event start/end

start (field) 52–54, 56, 57, 63, 65, 73, 77, 135

state . 17

status (field) .43

status registers . 37, 133

status_register (field) . 43

structure fields and argument names

ack_req90, 95, 101, 102, 122, 124

actual . 30, 41, 42, 56, 63

actual_map_size . 45, 46

145

atomic_operation . 78

atomic_type .78S

count . 78, 79

ct_handle 54, 55, 57, 65, 83–89, 106, 107

ct_handles . 87

datatype . 95–98, 103–105

desired . 30, 42

eq_handle 47, 54, 55, 79–81, 121

eq_handles . 82

event . 80–82, 85–87

failure . 83, 86, 88

features .30, 41, 56, 63, 92

get_md_handle 92, 96–98, 103, 105, 124

handle . 44

handle1 . 109

handle2 . 109

hdr_data .73, 77, 90, 95, 97, 98, 101, 103–105, 122,

135

id .51

iface .41, 42

ignore_bits . 67

increment . 88, 106

initiator . 77

iov_base . 54

iov_len .54

le . 60, 63

le_handle . 60, 61

length .41, 52, 53, 56, 57, 63, 65, 90–92, 95, 97, 98,

101, 102, 104, 105, 122–124

local_get_offset 96–98, 104, 105

local_offset 90, 91, 95, 101, 102, 123, 124

local_put_offset 96–98, 104, 105

map_size . 45, 46

mapping . 45, 46

match_bits 67, 77, 90, 91, 95, 97, 98, 101, 103–105,

122–124

match_id . 64, 67, 69

max_atomic_size 28, 40, 92, 95, 97, 98

max_cts . 40

max_entries . 40

max_eqs . 40

max_fetch_atomic_size40, 92, 96, 97

max_iovecs .40

max_list_size . 40

max_mds .40

max_msg_size . 40

max_pt_index . 40

max_triggered_ops . 40

max_unexpected_headers32, 40

max_volatile_size . 41, 53

max_war_ordered_size 30, 31, 41

max_waw_ordered_size30, 31, 40

md . 55

md_handle 55, 89–91, 95, 100–102, 121–124

me . 68, 70

me_handle . 68, 69

min_free . 28, 65

mlength 26, 53, 59, 67, 73, 77, 89

new_ct . 88, 107

ni_fail_type . . 32, 52, 53, 56–59, 62, 63, 65, 67, 70,

73, 74, 78, 135

ni_handle . 41–46, 48, 49, 51, 55, 59, 60, 62, 68, 70,

79, 84, 92, 107, 108

nid . 50

operand . 92, 97, 98, 105

operation . 95, 97, 98, 103–105

options 41, 46, 53, 58, 65, 122–124

pid . 41, 42, 50

pt_index . . 47–49, 59, 60, 62, 68, 70, 77, 90, 91, 95,

97, 98, 101, 103–105, 122–124

pt_index_req . 47

ptl_list . 59, 60, 68, 77

ptl_search_op . 62, 63, 70, 71

put_md_handle 92, 96–98, 104, 105, 123, 124

rank .37, 45, 50

remote_offset 77, 90, 91, 95, 97, 98, 101–105,

122–124

rlength . 26, 73, 77

size . 82, 87

start 52–54, 56, 57, 63, 65, 73, 77, 135

status . 43

status_register . 43

success . 83, 86, 88

target_id 90, 91, 95, 97, 98, 101, 103–105, 122–124

test . 86, 87

tests . 87

threshold . 99–107

timeout . 82, 87

trig_ct_handle . 99–107

type . 77

uid . 50, 57, 65, 77

user_ptr . . 60, 61, 63, 68, 69, 71, 73, 77, 78, 90, 91,

95, 97, 98, 101–105, 121–124, 135

which .81, 82, 86, 87

success (field) . 83, 86, 88

summary . 109

SUNMOS . [14], 16

swap operation . 113

T
target see also initiator, 13, [14], 17, 19–22, 24, 49,

71–76, 89–92, 95–98, 122–126

target_id (field) 90, 91, 95, 97, 98, 101, 103–105,

122–124

TCP/IP .16, 130

test (field) . 86, 87

tests (field) . 87

thread . [14], 32

146

thread ID . 50

threshold (field) . 99–107T

timeout .81, 86

timeout (field) . 82, 87

trig_ct_handle (field) . 99–107

triggered operations . 31, 99

atomic . 102

canceling . 85

counting event increment . 106

counting event set . 106

fetch and atomic . 103

get . 101

put . 100

swap .104

threshold . 99

truncate . 66, 118, 125

trusted header . 49

two-sided operation . 17, 28

type (field) . 77

types . see data types

ptl_ack_req_t 89, 110, 114, 115, 118, 119, 122, 124

ptl_ct_event_t83, 85–87, 110, 112

ptl_datatype_t92, 93, 95–97, 110

ptl_event_kind_t . 71, 110, 115

ptl_event_t . . 71, 75, 78, 80–82, 110–112, 122, 125

ptl_handle_any_t .36, 110, 115

ptl_handle_ct_t 36, 82, 83, 110, 115

ptl_handle_eq_t 36, 71, 110, 115

ptl_handle_le_t . 110

ptl_handle_md_t 110, 122–124

ptl_handle_me_t . 110

ptl_handle_ni_t .36, 111

ptl_hdr_data_t . 111, 122

ptl_interface_t . 37, 111, 115

ptl_iovec_t 52–54, 56, 58, 63, 66, 111, 112

ptl_le_t . 57, 110–112

ptl_list_t 60, 68, 111, 123, 124

ptl_match_bits_t 35, 37, 111, 122–124

ptl_md_t . 30, 31, 52, 110–112

ptl_me_t . 64, 110–112

ptl_ni_fail_t . 74, 111, 118

ptl_ni_limits_t 31, 39, 111, 112

ptl_nid_t . 37, 111, 118

ptl_op_t 92, 93, 95, 111, 114–120

ptl_pid_t . 37, 111, 119

ptl_process_t 45, 46, 50, 67, 111, 112, 122–124

ptl_pt_index_t 37, 112, 119, 122–124

ptl_rank_t . 37, 112, 119

ptl_search_op_t . 62, 112

ptl_size_t 36, 112, 119, 122–124

ptl_sr_index_t37, 112, 119, 133

ptl_sr_value_t . 37, 112

ptl_time_t . 112, 120

ptl_uid_t 37, 112, 120, 122–124

U
uid (field) . 50, 57, 65, 77

undefined behavior . 38, 39, 43

unexpected list 25, 57, 60, 62, 68, 70

unexpected message event . 72

unexpected messages . 16

unlink . 65

ME . see ME

UPC . 15

usage . 23

user data . 60, 63, 68, 71, 90

user ID . 37, 49, 77, 112, 113, 120

user memory . 28

user space .17

user-level bypass see application bypass

user_ptr (field) . 60, 61, 63, 68, 69, 71, 73, 77, 78, 90, 91,

95, 97, 98, 101–105, 121–124, 135

V
VIA . [14]

W
which (field) . 81, 82, 86, 87

wire protocol . 19, 20, 121

Z
zero copy . 17

zero-length buffer . 56, 63

[n] page n is in the glossary.

n page of a definition or a main entry.

n other pages where an entry is mentioned.

147

DISTRIBUTION:

1 Trammell Hudson

c/o OS Research

1527 16th NW #5

Washington, DC 20036
1 Arthur B. Maccabe

Oak Ridge National Laboratory

PO Box 2008

Oak Ridge, TN 37831-6164
1 Neil Pundit

1354 Plumosa Way

Weston, FL 33327
1 Keith Underwood

Oak Ridge National Laboratory

PO Box 2008

Oak Ridge, TN 37831-6164

1 MS 0806 Jim Schutt, 9336

1 MS 1319 Brian Barrett, 1423

1 MS 1319 Ron Brightwell, 1423

1 MS 1319 Doug Doerfler, 1422

1 MS 1319 K. Scott Hemmert, 1422

1 MS 1319 Sue Kelly, 1422

1 MS 1319 Mike Levenhagen, 1422

1 MS 1319 Ron Oldfield, 1423

1 MS 1319 Kevin Pedretti, 1423

1 MS 1319 Lee Ward, 1423

1 MS 0899 Technical Library, 9536 (electronic copy)

148

v1.38

	Contents
	List of Figures
	List of Tables
	List of Implementation Notes
	Preface
	Nomenclature
	1 Introduction
	1.1 Overview
	1.2 Purpose
	1.3 Background
	1.4 Scalability
	1.5 Communication Model
	1.6 Zero Copy, OS Bypass, and Application Bypass
	1.7 Faults

	2 An Overview of the Portals API
	2.1 Data Movement
	2.2 Usage
	2.3 Completion Events
	2.4 Portals Addressing
	2.4.1 Lists and List Entries
	2.4.2 Match Lists and Match List Entries

	2.5 Modifying Data Buffers
	2.6 Ordering
	2.6.1 Short Message Ordering Semantics
	2.6.2 Long Message Ordering Semantics
	2.6.3 Relative Ordering of Operations in Overlapping Portals
	2.6.4 Ordering of Unexpected Messages
	2.6.5 Relaxing Message Ordering

	2.7 Flow Control
	2.8 Multi-Threaded Applications

	3 The Portals API
	3.1 Naming Conventions and Typeface Usage
	3.2 Constants
	3.3 Base Types
	3.3.1 Sizes
	3.3.2 Handles
	3.3.3 Indexes
	3.3.4 Match Bits
	3.3.5 Network Interfaces
	3.3.6 Identifiers
	3.3.7 Status Registers

	3.4 Function Arguments and Return Codes
	3.5 Initialization and Cleanup
	3.5.1 PtlInit
	3.5.2 PtlFini

	3.6 Network Interfaces
	3.6.1 The Network Interface Limits Type
	3.6.2 PtlNIInit
	3.6.3 PtlNIFini
	3.6.4 PtlNIStatus
	3.6.5 PtlNIHandle
	3.6.6 PtlSetMap
	3.6.7 PtlGetMap

	3.7 Portal Table Entries
	3.7.1 PtlPTAlloc
	3.7.2 PtlPTFree
	3.7.3 PtlPTDisable
	3.7.4 PtlPTEnable

	3.8 User Identification
	3.8.1 PtlGetUid

	3.9 Process Identification
	3.9.1 The Process Identification Type
	3.9.2 PtlGetId
	3.9.3 PtlGetPhysId

	3.10 Memory Descriptors
	3.10.1 The Memory Descriptor Type
	3.10.2 The I/O Vector Type
	3.10.3 PtlMDBind
	3.10.4 PtlMDRelease

	3.11 List Entries and Lists
	3.11.1 The List Entry Type
	3.11.2 PtlLEAppend
	3.11.3 PtlLEUnlink
	3.11.4 PtlLESearch

	3.12 Match List Entries and Matching Lists
	3.12.1 The Match List Entry Type
	3.12.2 PtlMEAppend
	3.12.3 PtlMEUnlink
	3.12.4 PtlMESearch

	3.13 Events and Event Queues
	3.13.1 Kinds of Events
	3.13.2 Event Occurrence
	3.13.3 Failure Notification
	3.13.4 The Event Structure
	3.13.5 PtlEQAlloc
	3.13.6 PtlEQFree
	3.13.7 PtlEQGet
	3.13.8 PtlEQWait
	3.13.9 PtlEQPoll

	3.14 Lightweight Counting Events
	3.14.1 The Counting Event Type
	3.14.2 PtlCTAlloc
	3.14.3 PtlCTFree
	3.14.4 PtlCTCancelTriggered
	3.14.5 PtlCTGet
	3.14.6 PtlCTWait
	3.14.7 PtlCTPoll
	3.14.8 PtlCTSet
	3.14.9 PtlCTInc

	3.15 Data Movement Operations
	3.15.1 Portals Acknowledgment Type Definition
	3.15.2 PtlPut
	3.15.3 PtlGet
	3.15.4 Portals Atomics Overview
	3.15.5 PtlAtomic
	3.15.6 PtlFetchAtomic
	3.15.7 PtlSwap
	3.15.8 PtlAtomicSync

	3.16 Triggered Operations
	3.16.1 PtlTriggeredPut
	3.16.2 PtlTriggeredGet
	3.16.3 PtlTriggeredAtomic
	3.16.4 PtlTriggeredFetchAtomic
	3.16.5 PtlTriggeredSwap
	3.16.6 PtlTriggeredCTInc
	3.16.7 PtlTriggeredCTSet

	3.17 Deferred Communication Operations
	3.17.1 PtlStartBundle
	3.17.2 PtlEndBundle

	3.18 Operations on Handles
	3.18.1 PtlHandleIsEqual

	3.19 Summary

	4 Guide to Implementors
	4.1 Run-time Support
	4.2 Data Transfer
	4.2.1 Sending Messages
	4.2.2 Receiving Messages

	4.3 Event Generation and Error Reporting

	A Portals Design Guidelines
	A.1 Mandatory Requirements
	A.2 The Will Requirements
	A.3 The Should Requirements

	B README Definition
	C Summary of Changes
	C.1 Portals 4.0.1
	C.2 Portals 4.0

	Index

